1. Describe why the horizontal line test is an effective way to determine whether a function is one-to-one?
2. Why do we restrict the domain of the function [latex]f\left(x\right)={x}^{2}[/latex] to find the function’s inverse?
3. Can a function be its own inverse? Explain.
4. Are one-to-one functions either always increasing or always decreasing? Why or why not?
5. How do you find the inverse of a function algebraically?
6. Show that the function [latex]f\left(x\right)=a-x[/latex] is its own inverse for all real numbers [latex]a[/latex].
For the following exercises, find [latex]{f}^{-1}\left(x\right)[/latex] for each function.
7. [latex]f\left(x\right)=x+3[/latex]
8. [latex]f\left(x\right)=x+5[/latex]
9. [latex]f\left(x\right)=2-x[/latex]
10. [latex]f\left(x\right)=3-x[/latex]
11. [latex]f\left(x\right)=\frac{x}{x+2}\\[/latex]
12. [latex]f\left(x\right)=\frac{2x+3}{5x+4}[/latex]
For the following exercises, find a domain on which each function [latex]f[/latex] is one-to-one and non-decreasing. Write the domain in interval notation. Then find the inverse of [latex]f[/latex] restricted to that domain.
13. [latex]f\left(x\right)={\left(x+7\right)}^{2}[/latex]
14. [latex]f\left(x\right)={\left(x - 6\right)}^{2}[/latex]
15. [latex]f\left(x\right)={x}^{2}-5[/latex]
16. Given [latex]f\left(x\right)=\frac{x}{2}+x\\[/latex] and [latex]g\left(x\right)=\frac{2x}{1-x}\\[/latex]
a. Find [latex]f\left(g\left(x\right)\right)[/latex] and [latex]g\left(f\left(x\right)\right)\\[/latex]
b. What does the answer tell us about the relationship between [latex]f\left(x\right)[/latex] and [latex]g\left(x\right)?[/latex]
For the following exercises, use function composition to verify that [latex]f\left(x\right)[/latex] and [latex]g\left(x\right)[/latex] are inverse functions.
17. [latex]f\left(x\right)=\sqrt[3]{x - 1}[/latex] and [latex]g\left(x\right)={x}^{3}+1[/latex]
18. [latex]f\left(x\right)=-3x+5[/latex] and [latex]g\left(x\right)=\frac{x - 5}{-3}[/latex]
For the following exercises, use a graphing utility to determine whether each function is one-to-one.
19. [latex]f\left(x\right)=\sqrt{x}[/latex]
20. [latex]f\left(x\right)=\sqrt[3]{3x+1}[/latex]
21. [latex]f\left(x\right)=-5x+1[/latex]
22. [latex]f\left(x\right)={x}^{3}-27[/latex]
For the following exercises, determine whether the graph represents a one-to-one function.
23.
24.
For the following exercises, use the graph of [latex]f[/latex] shown in [link].
25. Find [latex]f\left(0\right)[/latex].
26. Solve [latex]f\left(x\right)=0[/latex].
27. Find [latex]{f}^{-1}\left(0\right)[/latex].
28. Solve [latex]{f}^{-1}\left(x\right)=0[/latex].
For the following exercises, use the graph of the one-to-one function shown below.
29. Sketch the graph of [latex]{f}^{-1}[/latex].
30. Find [latex]f\left(6\right)\text{ and }{f}^{-1}\left(2\right)[/latex].
31. If the complete graph of [latex]f[/latex] is shown, find the domain of [latex]f[/latex].
32. If the complete graph of [latex]f[/latex] is shown, find the range of [latex]f[/latex].
For the following exercises, evaluate or solve, assuming that the function [latex]f[/latex] is one-to-one.
33. If [latex]f\left(6\right)=7[/latex], find [latex]{f}^{-1}\left(7\right)[/latex].
34. If [latex]f\left(3\right)=2[/latex], find [latex]{f}^{-1}\left(2\right)[/latex].
35. If [latex]{f}^{-1}\left(-4\right)=-8[/latex], find [latex]f\left(-8\right)[/latex].
36. If [latex]{f}^{-1}\left(-2\right)=-1[/latex], find [latex]f\left(-1\right)[/latex].
For the following exercises, use the values listed in the table below to evaluate or solve.
[latex]x[/latex] | [latex]f\left(x\right)[/latex] |
0 | 8 |
1 | 0 |
2 | 7 |
3 | 4 |
4 | 2 |
5 | 6 |
6 | 5 |
7 | 3 |
8 | 9 |
9 | 1 |
37. Find [latex]f\left(1\right)[/latex].
38. Solve [latex]f\left(x\right)=3[/latex].
39. Find [latex]{f}^{-1}\left(0\right)[/latex].
40. Solve [latex]{f}^{-1}\left(x\right)=7[/latex].
41. Use the tabular representation of [latex]f[/latex] to create a table for [latex]{f}^{-1}\left(x\right)[/latex].
[latex]x[/latex] | 3 | 6 | 9 | 13 | 14 |
[latex]f\left(x\right)[/latex] | 1 | 4 | 7 | 12 | 16 |
For the following exercises, find the inverse function. Then, graph the function and its inverse.
42. [latex]f\left(x\right)=\frac{3}{x - 2}[/latex]
43. [latex]f\left(x\right)={x}^{3}-1[/latex]
44. Find the inverse function of [latex]f\left(x\right)=\frac{1}{x - 1}[/latex]. Use a graphing utility to find its domain and range. Write the domain and range in interval notation.
45. To convert from [latex]x[/latex] degrees Celsius to [latex]y[/latex] degrees Fahrenheit, we use the formula [latex]f\left(x\right)=\frac{9}{5}x+32[/latex]. Find the inverse function, if it exists, and explain its meaning.
46. The circumference [latex]C[/latex] of a circle is a function of its radius given by [latex]C\left(r\right)=2\pi r[/latex]. Express the radius of a circle as a function of its circumference. Call this function [latex]r\left(C\right)[/latex]. Find [latex]r\left(36\pi \right)[/latex] and interpret its meaning.
47. A car travels at a constant speed of 50 miles per hour. The distance the car travels in miles is a function of time, [latex]t[/latex], in hours given by [latex]d\left(t\right)=50t[/latex]. Find the inverse function by expressing the time of travel in terms of the distance traveled. Call this function [latex]t\left(d\right)[/latex]. Find [latex]t\left(180\right)[/latex] and interpret its meaning.
Candela Citations
- Precalculus. Authored by: Jay Abramson, et al.. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175. License: CC BY: Attribution. License Terms: Download For Free at : http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175.