In the following exercises (1-4), use the limit laws to evaluate each limit. Justify each step by indicating the appropriate limit law(s).
1. limx→0(4x2−2x+3)
Show Solution
Use constant multiple law and difference law: limx→0(4x2−2x+3)=4limx→0x2−2limx→0x+limx→03=3
2. limx→1x3+3x2+54−7x
3. limx→−2√x2−6x+3
Show Solution
Use root law: limx→−2√x2−6x+3=√limx→−2(x2−6x+3)=√19
4. limx→−1(9x+1)2
In the following exercises (5-10), use direct substitution to evaluate each limit.
6. limx→−2(4x2−1)
7. limx→011+sinx
8. limx→2e2x−x2
9. limx→12−7xx+6
10. limx→3lne3x
In the following exercises (11-20), use direct substitution to show that each limit leads to the indeterminate form 00. Then, evaluate the limit.
11. limx→4x2−16x−4
Show Solution
limx→4x2−16x−4=16−164−4=00; then, limx→4x2−16x−4=limx→4(x+4)(x−4)x−4=8
12. limx→2x−2x2−2x
13. limx→63x−182x−12
Show Solution
limx→63x−182x−12=18−1812−12=00; then, limx→63x−182x−12=limx→63(x−6)2(x−6)=32
14. limh→0(1+h)2−1h
15. limt→9t−9√t−3
Show Solution
limt→9t−9√t−3=9−93−3=00; then, limt→9t−9√t−3=limt→9t−9√t−3√t+3√t+3=limt→9(√t+3)=6
16. limh→01a+h−1ah, where a is a real-valued constant
17. limθ→πsinθtanθ
Show Solution
limθ→πsinθtanθ=sinπtanπ=00; then, limθ→πsinθtanθ=limθ→πsinθsinθcosθ=limθ→πcosθ=−1.
18. limx→1x3−1x2−1
19. limx→1/22x2+3x−22x−1
Show Solution
limx→1/22x2+3x−22x−1=12+32−21−1=00; then, limx→1/22x2+3x−22x−1=limx→1/2(2x−1)(x+2)2x−1=52
20. limx→−3√x+4−1x+3
In the following exercises (21-24), use direct substitution to obtain an undefined expression. Then, use the method of (Figure) to simplify the function to help determine the limit.
21. limx→−2−2x2+7x−4x2+x−2
22. limx→−2+2x2+7x−4x2+x−2
23. limx→1−2x2+7x−4x2+x−2
24. limx→1+2x2+7x−4x2+x−2
In the following exercises (25-32), assume that limx→6f(x)=4,limx→6g(x)=9, and limx→6h(x)=6. Use these three facts and the limit laws to evaluate each limit.
25. limx→62f(x)g(x)
Show Solution
limx→62f(x)g(x)=2limx→6f(x)limx→6g(x)=72
26. limx→6g(x)−1f(x)
27. limx→6(f(x)+13g(x))
Show Solution
limx→6(f(x)+13g(x))=limx→6f(x)+13limx→6g(x)=7
28. limx→6(h(x))32
29. limx→6√g(x)−f(x)
Show Solution
limx→6√g(x)−f(x)=√limx→6g(x)−limx→6f(x)=√5
30. limx→6x⋅h(x)
31. limx→6[(x+1)⋅f(x)]
Show Solution
limx→6[(x+1)⋅f(x)]=(limx→6(x+1))(limx→6f(x))=28.
32. limx→6(f(x)⋅g(x)−h(x))
In the following exercises (33-35), use a calculator to draw the graph of each piecewise-defined function and study the graph to evaluate the given limits.
33. [T] f(x)={x2,x≤3x+4,x>3
- limx→3−f(x)
- limx→3+f(x)
Show Solution

a. 9; b. 7
34. [T] g(x)={x3−1,x≤01,x>0
- limx→0−g(x)
- limx→0+g(x)
35. [T] h(x)={x2−2x+1,x<23−x,x≥2
-
- limx→2−h(x)
- limx→2+h(x)
Show Solution

a. 1; b. 1
In the following exercises (36-43), use the graphs below and the limit laws to evaluate each limit.

36. limx→−3+(f(x)+g(x))
37. limx→−3−(f(x)−3g(x))
Show Solution
limx→−3−(f(x)−3g(x))=limx→−3−f(x)−3limx→−3−g(x)=0+6=6
38. limx→0f(x)g(x)3
39. limx→−52+g(x)f(x)
Show Solution
limx→−52+g(x)f(x)=2+(limx→−5g(x))limx→−5f(x)=2+02=1
40. limx→1(f(x))2
41. limx→13√f(x)−g(x)
Show Solution
limx→13√f(x)−g(x)=3√limx→1f(x)−limx→1g(x)=3√2+5=3√7
42. limx→−7(x⋅g(x))
43. limx→−9[xf(x)+2g(x)]
Show Solution
limx→−9(x⋅f(x)+2g(x))=(limx→−9x)(limx→−9f(x))+2limx→−9(g(x))=(−9)(6)+2(4)=−46
For the following problems (44-46), evaluate the limit using the Squeeze Theorem. Use a calculator to graph the functions f(x),g(x), and h(x) when possible.
44. [T] True or False? If 2x−1≤g(x)≤x2−2x+3, then limx→2g(x)=0.
45. [T] limθ→0θ2cos(1θ)
Show Solution
The limit is zero.
![The graph of three functions over the domain [-1,1], colored red, green, and blue as follows: red: theta^2, green: theta^2 * cos (1/theta), and blue: - (theta^2). The red and blue functions open upwards and downwards respectively as parabolas with vertices at the origin. The green function is trapped between the two.](https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/2332/2018/01/11203457/CNX_Calc_Figure_02_03_206.jpg)
46. limx→0f(x), where f(x)={0,xrationalx2,xirrational
47. [T] In physics, the magnitude of an electric field generated by a point charge at a distance r in vacuum is governed by Coulomb’s law: E(r)=q4πε0r2, where E represents the magnitude of the electric field, q is the charge of the particle, r is the distance between the particle and where the strength of the field is measured, and 14πε0 is Coulomb’s constant: 8.988×109N⋅m2/C2.
- Use a graphing calculator to graph E(r) given that the charge of the particle is q=10−10.
- Evaluate limr→0+E(r). What is the physical meaning of this quantity? Is it physically relevant? Why are you evaluating from the right?
Show Solution
a.

b. limr→0+E(r)=∞. The magnitude of the electric field as you approach the particle q becomes infinite. It does not make physical sense to evaluate negative distance.
48. [T] The density of an object is given by its mass divided by its volume: ρ=mV.
- Use a calculator to plot the volume as a function of density (V=mρ), assuming you are examining something of mass 8 kg (m=8).
- Evaluate limρ→0+V(ρ) and explain the physical meaning.
Candela Citations
CC licensed content, Shared previously