General Formulas
1. ddx(c)=0
2. ddx(f(x)+g(x))=f′(x)+g′(x)
3. ddx(f(x)g(x))=f′(x)g(x)+f(x)g′(x)
4. ddx(xn)=nxn−1,for real numbersn
5. ddx(cf(x))=cf′(x)
6. ddx(f(x)−g(x))=f′(x)−g′(x)
7. ddx(f(x)g(x))=g(x)f′(x)−f(x)g′(x)(g(x))2
8. ddx[f(g(x))]=f′(g(x))·g′(x)
Trigonometric Functions
9. ddx(sinx)=cosx
10. ddx(tanx)=sec2x
11. ddx(secx)=secxtanx
12. ddx(cosx)=−sinx
13. ddx(cotx)=−csc2x
14. ddx(cscx)=−cscxcotx
Inverse Trigonometric Functions
15. ddx(sin−1x)=1√1−x2
16. ddx(tan−1x)=11+x2
17. ddx(sec−1x)=1|x|√x2−1
18. ddx(cos−1x)=−1√1−x2
19. ddx(cot−1x)=−11+x2
20. ddx(csc−1x)=−1|x|√x2−1
Exponential and Logarithmic Functions
21. ddx(ex)=ex
22. ddx(ln|x|)=1x
23. ddx(bx)=bxlnb
24. ddx(logbx)=1xlnb
Hyperbolic Functions
25. ddx(sinhx)=coshx
26. ddx(tanhx)=sech2x
27. ddx(sechx)=−sechxtanhx
28. ddx(coshx)=sinhx
29. ddx(cothx)=−csch2x
30. ddx(cschx)=−cschxcothx
Inverse Hyperbolic Functions
31. ddx(sinh−1x)=1√x2+1
32. ddx(tanh−1x)=11−x2(|x|<1)
33. [latex]\frac{d}{dx}({\text{sech}}^{-1}x)=-\frac{1}{x\sqrt{1-{x}^{2}}}\phantom{\rule{1em}{0ex}}(0
34. ddx(cosh−1x)=1√x2−1(x>1)
35. ddx(coth−1x)=11−x2(|x|>1)
36. ddx(csch−1x)=−1|x|√1+x2(x≠0)
Candela Citations
- Calculus Volume 1. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/details/books/calculus-volume-1. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-1/pages/1-introduction