Formulas from Geometry
A=area,A=area,V=Volume, and V=Volume, and S=lateral surface areaS=lateral surface area
Formulas from Algebra
Laws of Exponents
xmxn=xm+nxmxn=xm−n(xm)n=xmnx−n=1xn(xy)n=xnyn(xy)n=xnynx1/n=n√xn√xy=n√xn√yn√xy=n√xn√yxm/n=n√xm=(n√x)mxmxn=xm+nxmxn=xm−n(xm)n=xmnx−n=1xn(xy)n=xnyn(xy)n=xnynx1/n=n√xn√xy=n√xn√yn√xy=n√xn√yxm/n=n√xm=(n√x)m
Special Factorizations
x2−y2=(x+y)(x−y)x3+y3=(x+y)(x2−xy+y2)x3−y3=(x−y)(x2+xy+y2)x2−y2=(x+y)(x−y)x3+y3=(x+y)(x2−xy+y2)x3−y3=(x−y)(x2+xy+y2)
Quadratic Formula
If ax2+bx+c=0,ax2+bx+c=0, then x=−b±√b2−4ca2a.x=−b±√b2−4ca2a.
Binomial Theorem
(a+b)n=an+(n1)an−1b+(n2)an−2b2+⋯+(nn−1)abn−1+bn,(a+b)n=an+(n1)an−1b+(n2)an−2b2+⋯+(nn−1)abn−1+bn,
where (nk)=n(n−1)(n−2)⋯(n−k+1)k(k−1)(k−2)⋯3⋅2⋅1=n!k!(n−k)!(nk)=n(n−1)(n−2)⋯(n−k+1)k(k−1)(k−2)⋯3⋅2⋅1=n!k!(n−k)!
Formulas from Trigonometry
Right-Angle Trigonometry
sinθ=opphypcscθ=hypoppcosθ=adjhypsecθ=hypadjtanθ=oppadjcotθ=adjoppsinθ=opphypcscθ=hypoppcosθ=adjhypsecθ=hypadjtanθ=oppadjcotθ=adjopp
Trigonometric Functions of Important Angles
θθ | Radians | sinθ | cosθ | tanθ |
0° | 0 | 0 | 1 | 0 |
30° | π/6 | 1/2 | √3/2 | √3/3 |
45° | π/4 | √2/2 | √2/2 | 1 |
60° | π/3 | √3/2 | 1/2 | √3 |
90° | π/2 | 1 | 0 | — |
Fundamental Identities
sin2θ+cos2θ=1sin(−θ)=−sinθ1+tan2θ=sec2θcos(−θ)=cosθ1+cot2θ=csc2θtan(−θ)=−tanθsin(π2−θ)=cosθsin(θ+2π)=sinθcos(π2−θ)=sinθcos(θ+2π)=cosθtan(π2−θ)=cotθtan(θ+π)=tanθ
Law of Sines
sinAa=sinBb=sinCc
Law of Cosines
a2=b2+c2−2bccosAb2=a2+c2−2accosBc2=a2+b2−2abcosC
Addition and Subtraction Formulas
sin(x+y)=sinxcosy+cosxsinysin(x−y)=sinxcosy−cosxsinycos(x+y)=cosxcosy−sinxsinycos(x−y)=cosxcosy+sinxsinytan(x+y)=tanx+tany1−tanxtanytan(x−y)=tanx−tany1+tanxtany
Double-Angle Formulas
sin2x=2sinxcosxcos2x=cos2x−sin2x=2cos2x−1=1−2sin2xtan2x=2tanx1−tan2x
Half-Angle Formulas
sin2x=1−cos2x2cos2x=1+cos2x2
Candela Citations
- Calculus Volume 1. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/details/books/calculus-volume-1. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-1/pages/1-introduction