Learning Outcomes
- Determine the length of a curve, between two points
- Determine the length of a curve, between two points
Arc Length of the Curve = ()
In previous applications of integration, we required the function to be integrable, or at most continuous. However, for calculating arc length we have a more stringent requirement for Here, we require to be differentiable, and furthermore we require its derivative, to be continuous. Functions like this, which have continuous derivatives, are called smooth. (This property comes up again in later chapters.)
Let be a smooth function defined over We want to calculate the length of the curve from the point to the point We start by using line segments to approximate the length of the curve. For let be a regular partition of Then, for construct a line segment from the point to the point Although it might seem logical to use either horizontal or vertical line segments, we want our line segments to approximate the curve as closely as possible. Figure 1 depicts this construct for

Figure 1. We can approximate the length of a curve by adding line segments.
To help us find the length of each line segment, we look at the change in vertical distance as well as the change in horizontal distance over each interval. Because we have used a regular partition, the change in horizontal distance over each interval is given by The change in vertical distance varies from interval to interval, though, so we use to represent the change in vertical distance over the interval as shown in Figure 2. Note that some (or all) may be negative.

Figure 2. A representative line segment approximates the curve over the interval
By the Pythagorean theorem, the length of the line segment is We can also write this as Now, by the Mean Value Theorem, there is a point such that Then the length of the line segment is given by Adding up the lengths of all the line segments, we get
This is a Riemann sum. Taking the limit as we have
We summarize these findings in the following theorem.
Arc Length for = ()
Let be a smooth function over the interval Then the arc length of the portion of the graph of from the point to the point is given by
Note that we are integrating an expression involving so we need to be sure is integrable. This is why we require to be smooth. The following example shows how to apply the theorem.
Example: Calculating the Arc Length of a Function of
Let Calculate the arc length of the graph of over the interval Round the answer to three decimal places.
Try It
Let Calculate the arc length of the graph of over the interval Round the answer to three decimal places.
Watch the following video to see the worked solution to the above Try It.
Although it is nice to have a formula for calculating arc length, this particular theorem can generate expressions that are difficult to integrate. We study some techniques for integration in Introduction to Techniques of Integration in the second volume of this text. In some cases, we may have to use a computer or calculator to approximate the value of the integral.
Example: Using a Computer or Calculator to Determine the Arc Length of a Function of
Let Calculate the arc length of the graph of over the interval
Try It
Let Calculate the arc length of the graph of over the interval Use a computer or calculator to approximate the value of the integral.
Watch the following video to see the worked solution to the above Try It.
Arc Length of the Curve = ()
We have just seen how to approximate the length of a curve with line segments. If we want to find the arc length of the graph of a function of we can repeat the same process, except we partition the instead of the Figure 3 shows a representative line segment.

Figure 3. A representative line segment over the interval
Then the length of the line segment is which can also be written as If we now follow the same development we did earlier, we get a formula for arc length of a function
Arc Length for = ()
Let be a smooth function over an interval Then, the arc length of the graph of from the point to the point is given by
Example: Calculating the Arc Length of a Function of
Let Calculate the arc length of the graph of over the interval
Try It
Let Calculate the arc length of the graph of over the interval Use a computer or calculator to approximate the value of the integral.
Candela Citations
- 2.4 Arc Length of a Curve and Surface Area. Authored by: Ryan Melton. License: CC BY: Attribution
- Calculus Volume 1. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/details/books/calculus-volume-1. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-1/pages/1-introduction