Integrals that Result in Inverse Trig Functions

Learning Outcomes

  • Integrate functions resulting in inverse trigonometric functions

Integrals that Result in Inverse Sine Functions

Let us begin with the three formulas. Along with these formulas, we use substitution to evaluate the integrals. We prove the formula for the inverse sine integral.

Integration Formulas Resulting in Inverse Trigonometric Functions


The following integration formulas yield inverse trigonometric functions:

  1. dua2u2=sin1u|a|+C
  2. dua2+u2=1atan1ua+C
  3. duuu2a2=1|a|sec1|u|a+C

Proof

Let y=sin1xa. Then asiny=x. Now let’s use implicit differentiation. We obtain

ddx(asiny)=ddx(x)acosydydx=1dydx=1acosy.

 

For π2yπ2,cosy0. Thus, applying the Pythagorean identity sin2y+cos2y=1, we have cosy=1=sin2y. This gives

1acosy=1a1sin2y=1a2a2sin2y=1a2x2.

 

Then for axa, we have

1a2u2du=sin1(ua)+C.

◼

Evaluating a Definite Integral Using Inverse Trigonometric Functions

Evaluate the definite integral 012dx1x2.

Try It

Find the antiderivative of dx116x2.

Watch the following video to see the worked solution to the above Try It.

Example: Finding an Antiderivative Involving an Inverse Trigonometric Function

Evaluate the integral dx49x2.

Try It

Find the indefinite integral using an inverse trigonometric function and substitution for dx9x2.

Watch the following video to see the worked solution to the above Try It.

Evaluating a Definite Integral

Evaluate the definite integral 03/2du1u2.

Integrals Resulting in Other Inverse Trigonometric Functions

There are six inverse trigonometric functions. However, only three integration formulas are noted in the rule on integration formulas resulting in inverse trigonometric functions because the remaining three are negative versions of the ones we use. The only difference is whether the integrand is positive or negative. Rather than memorizing three more formulas, if the integrand is negative, simply factor out −1 and evaluate the integral using one of the formulas already provided. To close this section, we examine one more formula: the integral resulting in the inverse tangent function.

Example: Finding an Antiderivative Involving the Inverse Tangent Function

Find an antiderivative of 11+4x2dx.

Try It

Use substitution to find the antiderivative of dx25+4x2.

Example: Applying the Integration Formulas

Find the antiderivative of 19+x2dx.

Try It

Find the antiderivative of dx16+x2.

Evaluating a Definite Integral

Evaluate the definite integral 3/33dx1+x2.

Try It

Evaluate the definite integral 02dx4+x2.

Watch the following video to see the worked solution to the above Try It.

Try It