Problem Set: Approximating Areas

1. State whether the given sums are equal or unequal.

  1. Σ10i=1i and Σ10k=1k
  2. Σ10i=1i and Σ15i=6(i5)
  3. Σ10i=1i(i1) and Σ9j=0(j+1)j
  4. Σ10i=1i(i1) and Σ10k=1(k2k)

In the following exercises (2-3), use the rules for sums of powers of integers to compute the sums.

2. i=510i

3. i=510i2

Suppose that Σ100i=1ai=15 and Σ100i=1bi=12. In the following exercises (4-7), compute the sums.

4. i=1100(ai+bi)

5. i=1100(aibi)

6. i=1100(3ai4bi)

7. i=1100(5ai+4bi)

In the following exercises (8-11), use summation properties and formulas to rewrite and evaluate the sums.

8. k=120100(k25k+1)

9. j=150(j22j)

10. j=1120(j210j)

11. k=125[(2k)2100k]

Let Ln denote the left-endpoint sum using n subintervals and let Rn denote the corresponding right-endpoint sum. In the following exercises (12-19), compute the indicated left and right sums for the given functions on the indicated interval.

12. L4 for f(x)=1x1 on [2,3]

13. R4 for g(x)=cos(πx) on [0,1]

14. L6 for f(x)=1x(x1) on [2,5]

15. R6 for f(x)=1x(x1) on [2,5]

16.  R4 for 1x2+1 on [2,2]

17. L4 for 1x2+1 on [2,2]

18. R4 for x22x+1 on [0,2]

19. L8 for x22x+1 on [0,2]

20. Compute the left and right Riemann sums—L4 and R4, respectively—for f(x)=(2|x|) on [2,2]. Compute their average value and compare it with the area under the graph of f.

21. Compute the left and right Riemann sums—L6 and R6, respectively—for f(x)=(3|3x|) on [0,6]. Compute their average value and compare it with the area under the graph of f.

22. Compute the left and right Riemann sums—L4 and R4, respectively—for f(x)=4x2 on [2,2] and compare their values.

23. Compute the left and right Riemann sums—L6 and R6, respectively—for f(x)=9(x3)2 on [0,6] and compare their values.

Express the following endpoint sums in sigma notation but do not evaluate them (24-27).

24. L30 for f(x)=x2 on [1,2]

25. L10 for f(x)=4x2 on [2,2]

26. R20 for f(x)=sinx on [0,π]

27. R100 for lnx on [1,e]

In the following exercises (28-33), graph the function then use a calculator or a computer program to evaluate the following left and right endpoint sums. Is the area under the curve between the left and right endpoint sums?

28. [T] L100 and R100 for y=x23x+1 on the interval [1,1]

29. [T] L100 and R100 for y=x2 on the interval [0,1]

30. [T] L50 and R50 for y=x+1x21 on the interval [2,4]

31. [T] L100 and R100 for y=x3 on the interval [1,1]

32. [T] L50 and R50 for y=tanx on the interval [0,π4]

33. [T] L100 and R100 for y=e2x on the interval [1,1]

34. Let tj denote the time that it took Tejay van Garteren to ride the jth stage of the Tour de France in 2014. If there were a total of 21 stages, interpret j=121tj.

35. Let rj denote the total rainfall in Portland on the jth day of the year in 2009. Interpret j=131rj.

36. Let dj denote the hours of daylight and δj denote the increase in the hours of daylight from day j1 to day j in Fargo, North Dakota, on the jth day of the year. Interpret d1+Σ365j=2δj.

37. To help get in shape, Joe gets a new pair of running shoes. If Joe runs 1 mi each day in week 1 and adds 110 mi to his daily routine each week, what is the total mileage on Joe’s shoes after 25 weeks?

38. The following table gives approximate values of the average annual atmospheric rate of increase in carbon dioxide (CO2) each decade since 1960, in parts per million (ppm). Estimate the total increase in atmospheric CO2 between 1964 and 2013.

Average Annual Atmospheric CO2 Increase, 1964–2013Source: http://www.esrl.noaa.gov/gmd/ccgg/trends/.
Decade Ppm/y
1964–1973 1.07
1974–1983 1.34
1984–1993 1.40
1994–2003 1.87
2004–2013 2.07

39. The following table gives the approximate increase in sea level in inches over 20 years starting in the given year. Estimate the net change in mean sea level from 1870 to 2010.

Approximate 20-Year Sea Level Increases, 1870–1990Source: http://link.springer.com/article/10.1007%2Fs10712-011-9119-1
Starting Year 20-Year Change
1870 0.3
1890 1.5
1910 0.2
1930 2.8
1950 0.7
1970 1.1
1990 1.5

40. The following table gives the approximate increase in dollars in the average price of a gallon of gas per decade since 1950. If the average price of a gallon of gas in 2010 was $2.60, what was the average price of a gallon of gas in 1950?

Approximate 10-Year Gas Price Increases, 1950–2000Source: http://epb.lbl.gov/homepages/Rick_Diamond/docs/lbnl55011-trends.pdf.
Starting Year 10-Year Change
1950 0.03
1960 0.05
1970 0.86
1980 −0.03
1990 0.29
2000 1.12

41. The following table gives the percent growth of the U.S. population beginning in July of the year indicated. If the U.S. population was 281,421,906 in July 2000, estimate the U.S. population in July 2010.

Annual Percentage Growth of U.S. Population, 2000–2009Source: http://www.census.gov/popest/data.
Year % Change/Year
2000 1.12
2001 0.99
2002 0.93
2003 0.86
2004 0.93
2005 0.93
2006 0.97
2007 0.96
2008 0.95
2009 0.88

In the following exercises (42-45), estimate the areas under the curves by computing the left Riemann sums, L8.

42. A graph of a function that increases linearly with a slope of 1 from (0,1) to (3,4). It curves from (3,4) to (5,4), changing direction from increasing to decreasing at (4,5). Finally, it decreases linearly with a slope of 1 from (5,4) to (8,1).
43. The graph of a smooth curve going through the points (0,3), (1,2), (2,1), (3,2), (4,3), (5,4), (6,5), (7,4), and (8,3).

44. The graph of a smooth curve going through the points (0,0), (1,1), (2,2), (3,1), (4,3), (5,2), (6,4), (7,5), and (8,7).
45. The graph of a smooth curve going through the points (0, 3), (1, 5), (2, 7), (3, 6), (4, 8), (5, 6), (6, 5), (7, 4), and (8, 6).

46. [T] Use a computer algebra system to compute the Riemann sum, LN, for N=10,30,50 for f(x)=1x2 on [1,1].

47. [T] Use a computer algebra system to compute the Riemann sum, LN, for N=10,30,50 for f(x)=11+x2 on [1,1].

48. [T] Use a computer algebra system to compute the Riemann sum, LN, for N=10,30,50 for f(x)=sin2x on [0,2π]. Compare these estimates with π.

In the following exercises (49-50), use a calculator or a computer program to evaluate the endpoint sums RN and LN for N=1,10,100. How do these estimates compare with the exact answers, which you can find via geometry?

49. [T] y=cos(πx) on the interval [0,1]

50. [T] y=3x+2 on the interval [3,5]

In the following exercises (51-52), use a calculator or a computer program to evaluate the endpoint sums RN and LN for N=1,10,100.

51. [T] y=x45x2+4 on the interval [2,2], which has an exact area of 3215

52. [T] y=lnx on the interval [1,2], which has an exact area of 2ln(2)1

53. Explain why, if f(a)0 and f is increasing on [a,b], that the left endpoint estimate is a lower bound for the area below the graph of f on [a,b].

54. Explain why, if f(b)0 and f is decreasing on [a,b], that the left endpoint estimate is an upper bound for the area below the graph of f on [a,b].

55. Show that, in general, RNLN=(ba)×f(b)f(a)N.

56. Explain why, if f is increasing on [a,b], the error between either LN or RN and the area A below the graph of f is at most (ba)f(b)f(a)N.

57. For each of the three graphs:

  1. Obtain a lower bound L(A) for the area enclosed by the curve by adding the areas of the squares enclosed completely by the curve.
  2. Obtain an upper bound U(A) for the area by adding to L(A) the areas B(A) of the squares enclosed partially by the curve.
    Three graphs, stacked vertically, drawn on graph paper. Each shows the same image. However, the axes become progressively more exact in units. The first is marked in units, from negative 3 units to positive 3 units on each axis. The second has the half-units marked, and the third has the quarter units marked. As such, the graph paper boxes become smaller and smaller. The image is symmetrical across each axis and is a curved cross shape. It meets the axes at (0,3), (3,0), (0,-3), and (-3,0) and has corners roughly at (.7,.7), (.7,-.7), (-.7,-7.), and (-.7,.7). In graph 1, no square unit boxes are completely contained inside the shape. Twenty boxes are enclosed partially by the shape. In graph 2, nine boxes are completely contained inside the shape, and eleven boxes are enclosed partially by the shape. In graph 3, 11 boxes are completely contained inside the shape, and 4.5 are enclosed partially by the shape.

58. In the previous exercise, explain why L(A) gets no smaller while U(A) gets no larger as the squares are subdivided into four boxes of equal area.

59. A unit circle is made up of n wedges equivalent to the inner wedge in the figure. The base of the inner triangle is 1 unit and its height is sin(πn). The base of the outer triangle is B=cos(πn)+sin(πn)tan(πn) and the height is H=Bsin(2πn). Use this information to argue that the area of a unit circle is equal to π.

A wedge of a circle cut at an acute angle theta = 2pi / n. Several extra lines are drawn. The first is a line A connecting the ends of the two radii, creating a triangle. The second is another line B parallel to the A, connecting the radii a few units in from each endpoint. A concentric curve C connects the endpoints of B and is tangent to A near its midpoint. The area between this curve C and the edge of the circle is shaded in pink, and the rest of the wedge is purple. A final concentric curve is drawn very close to angle theta.