Problem Set: Derivatives of Trigonometric Functions

For the following exercises (1-10), find [latex]\frac{dy}{dx}[/latex] for the given functions.

1. [latex]y=x^2- \sec x+1[/latex]

2. [latex]y=3 \csc x+\dfrac{5}{x}[/latex]

3. [latex]y=x^2 \cot x[/latex]

4. [latex]y=x-x^3 \sin x[/latex]

5. [latex]y=\dfrac{\sec x}{x}[/latex]

6. [latex]y= \sin x \tan x[/latex]

7. [latex]y=(x+ \cos x)(1- \sin x)[/latex]

8. [latex]y=\dfrac{\tan x}{1- \sec x}[/latex]

9. [latex]y=\dfrac{1- \cot x}{1+ \cot x}[/latex]

10. [latex]y= \cos x(1+ \csc x)[/latex]

For the following exercises (11-16), find the equation of the tangent line to each of the given functions at the indicated values of [latex]x[/latex]. Then use a calculator to graph both the function and the tangent line to ensure the equation for the tangent line is correct.

11. [T] [latex]f(x)=−\sin x, \,\,\, x=0[/latex]

12. [T] [latex]f(x)= \csc x, \,\,\, x=\frac{\pi}{2}[/latex]

13. [T] [latex]f(x)=1+ \cos x, \,\,\, x=\frac{3\pi}{2}[/latex]

14. [T] [latex]f(x)= \sec x, \,\,\, x=\frac{\pi}{4}[/latex]

15. [T] [latex]f(x)=x^2- \tan x, \,\,\, x=0[/latex]

16. [T] [latex]f(x)=5 \cot x, \,\,\, x=\frac{\pi}{4}[/latex]

For the following exercises (17-22), find [latex]\frac{d^2 y}{dx^2}[/latex] for the given functions.

17. [latex]y=x \sin x- \cos x[/latex]

18. [latex]y= \sin x \cos x[/latex]

19. [latex]y=x-\frac{1}{2} \sin x[/latex]

20. [latex]y=\frac{1}{x}+ \tan x[/latex]

21. [latex]y=2 \csc x[/latex]

22. [latex]y=\sec^2 x[/latex]

23. Find all [latex]x[/latex] values on the graph of [latex]f(x)=-3 \sin x \cos x[/latex] where the tangent line is horizontal.

24. Find all [latex]x[/latex] values on the graph of [latex]f(x)=x-2 \cos x[/latex] for [latex]0

25. Let [latex]f(x)= \cot x[/latex]. Determine the point(s) on the graph of [latex]f[/latex] for [latex]0

26. [T] A mass on a spring bounces up and down in simple harmonic motion, modeled by the function [latex]s(t)=-6 \cos t[/latex] where [latex]s[/latex] is measured in inches and [latex]t[/latex] is measured in seconds. Find the rate at which the spring is oscillating at [latex]t=5[/latex] s.

27. Let the position of a swinging pendulum in simple harmonic motion be given by [latex]s(t)=a \cos t+b \sin t[/latex] where [latex]a[/latex] and [latex]b[/latex] are constants, [latex]t[/latex] measures time in seconds, and [latex]s[/latex] measures position in centimeters, If the position is [latex]0[/latex]cm and the velocity is [latex]3[/latex]cm/s when [latex]t=0[/latex], find the values of [latex]a[/latex] and [latex]b[/latex].

28. After a diver jumps off a diving board, the edge of the board oscillates with position given by [latex]s(t)=-5 \cos t[/latex] cm at [latex]t[/latex] seconds after the jump.

  1. Sketch one period of the position function for [latex]t\ge 0[/latex].
  2. Find the velocity function.
  3. Sketch one period of the velocity function for [latex]t\ge 0[/latex].
  4. Determine the times when the velocity is 0 over one period.
  5. Find the acceleration function.
  6. Sketch one period of the acceleration function for [latex]t\ge 0[/latex].

29. The number of hamburgers sold at a fast-food restaurant in Pasadena, California, is given by [latex]y=10+5 \sin x[/latex] where [latex]y[/latex] is the number of hamburgers sold and [latex]x[/latex] represents the number of hours after the restaurant opened at 11 a.m. until 11 p.m., when the store closes. Find [latex]y^{\prime}[/latex] and determine the intervals where the number of burgers being sold is increasing.

30. [T] The amount of rainfall per month in Phoenix, Arizona, can be approximated by [latex]y(t)=0.5+0.3 \cos t[/latex], where [latex]t[/latex] is the number of months since January. Find [latex]y^{\prime}[/latex] and use a calculator to determine the intervals where the amount of rain falling is decreasing.

For the following exercises (31-33), use the quotient rule to derive the given equations.

31. [latex]\frac{d}{dx}(\cot x)=−\csc^2 x[/latex]

32. [latex]\frac{d}{dx}(\sec x)= \sec x \tan x[/latex]

33. [latex]\frac{d}{dx}(\csc x)=−\csc x \cot x[/latex]

34. Use the definition of derivative and the identity

[latex]\cos (x+h)= \cos x \cos h- \sin x \sin h[/latex]  to prove that  [latex]\frac{d}{dx}(\cos x)=−\sin x[/latex].

For the following exercises (35-39), find the requested higher-order derivative for the given functions.

35. [latex]\frac{d^3 y}{dx^3}[/latex] of [latex]y=3 \cos x[/latex]

36. [latex]\frac{d^2 y}{dx^2}[/latex] of [latex]y=3 \sin x+x^2 \cos x[/latex]

37. [latex]\frac{d^4 y}{dx^4}[/latex] of [latex]y=5 \cos x[/latex]

38. [latex]\frac{d^2 y}{dx^2}[/latex] of [latex]y= \sec x+ \cot x[/latex]

39. [latex]\frac{d^3 y}{dx^3}[/latex] of [latex]y=x^{10}- \sec x[/latex]