For the following exercises (1-12), find [latex]f^{\prime}(x)[/latex] for each function.
1. [latex]f(x)=x^7+10[/latex]
2. [latex]f(x)=5x^3-x+1[/latex]
3. [latex]f(x)=4x^2-7x[/latex]
4. [latex]f(x)=8x^4+9x^2-1[/latex]
5. [latex]f(x)=x^4+\dfrac{2}{x}[/latex]
6. [latex]f(x)=3x\left(18x^4+\dfrac{13}{x+1}\right)[/latex]
7. [latex]f(x)=(x+2)(2x^2-3)[/latex]
8. [latex]f(x)=x^2\left(\dfrac{2}{x^2}+\dfrac{5}{x^3}\right)[/latex]
9. [latex]f(x)=\dfrac{x^3+2x^2-4}{3}[/latex]
10. [latex]f(x)=\dfrac{4x^3-2x+1}{x^2}[/latex]
11. [latex]f(x)=\dfrac{x^2+4}{x^2-4}[/latex]
12. [latex]f(x)=\dfrac{x+9}{x^2-7x+1}[/latex]
For the following exercises (13-16), find the equation of the tangent line [latex]T(x)[/latex] to the graph of the given function at the indicated point. Use a graphing calculator to graph the function and the tangent line.
13. [T] [latex]y=3x^2+4x+1[/latex] at [latex](0,1)[/latex]
14. [T] [latex]y=2\sqrt{x}+1[/latex] at [latex](4,5)[/latex]
15. [T] [latex]y=\dfrac{2x}{x-1}[/latex] at [latex](-1,1)[/latex]
16. [T] [latex]y=\dfrac{2}{x}-\dfrac{3}{x^2}[/latex] at [latex](1,-1)[/latex]
For the following exercises (17-20), assume that [latex]f(x)[/latex] and [latex]g(x)[/latex] are both differentiable functions for all [latex]x[/latex]. Find the derivative of each of the functions [latex]h(x)[/latex].
17. [latex]h(x)=4f(x)+\dfrac{g(x)}{7}[/latex]
18. [latex]h(x)=x^3f(x)[/latex]
19. [latex]h(x)=\dfrac{f(x)g(x)}{2}[/latex]
20. [latex]h(x)=\dfrac{3f(x)}{g(x)+2}[/latex]
For the following exercises (21-24), assume that [latex]f(x)[/latex] and [latex]g(x)[/latex] are both differentiable functions with values as given in the following table. Use the following table to calculate the following derivatives.
[latex]x[/latex] | 1 | 2 | 3 | 4 |
[latex]f(x)[/latex] | 3 | 5 | -2 | 0 |
[latex]g(x)[/latex] | 2 | 3 | -4 | 6 |
[latex]f^{\prime}(x)[/latex] | -1 | 7 | 8 | -3 |
[latex]g^{\prime}(x)[/latex] | 4 | 1 | 2 | 9 |
21. Find [latex]h^{\prime}(1)[/latex] if [latex]h(x)=xf(x)+4g(x)[/latex].
22. Find [latex]h^{\prime}(2)[/latex] if [latex]h(x)=\dfrac{f(x)}{g(x)}[/latex].
23. Find [latex]h^{\prime}(3)[/latex] if [latex]h(x)=2x+f(x)g(x)[/latex].
24. Find [latex]h^{\prime}(4)[/latex] if [latex]h(x)=\dfrac{1}{x}+\dfrac{g(x)}{f(x)}[/latex].
For the following exercises (25-27), use the following figure to find the indicated derivatives, if they exist.
25. Let [latex]h(x)=f(x)+g(x)[/latex]. Find
- [latex]h^{\prime}(1)[/latex]
- [latex]h^{\prime}(3)[/latex]
- [latex]h^{\prime}(4)[/latex]
26. Let [latex]h(x)=f(x)g(x)[/latex]. Find
- [latex]h^{\prime}(1)[/latex]
- [latex]h^{\prime}(3)[/latex]
- [latex]h^{\prime}(4)[/latex]
27. Let [latex]h(x)=\dfrac{f(x)}{g(x)}[/latex]. Find
- [latex]h^{\prime}(1)[/latex]
- [latex]h^{\prime}(3)[/latex]
- [latex]h^{\prime}(4)[/latex]
For the following exercises (28-31),
- Evaluate [latex]f^{\prime}(a)[/latex], and
- Graph the function [latex]f(x)[/latex] and the tangent line at [latex]x=a[/latex].
28. [T] [latex]f(x)=2x^3+3x-x^2, \,\,\, a=2[/latex]
29. [T] [latex]f(x)=\dfrac{1}{x}-x^2, \,\,\, a=1[/latex]
30. [T] [latex]f(x)=x^2-x^{12}+3x+2, \,\,\, a=0[/latex]
31. [T] [latex]f(x)=\dfrac{1}{x}-x^{\frac{2}{3}}, \,\,\, a=-1[/latex]
32. Find the equation of the tangent line to the graph of [latex]f(x)=2x^3+4x^2-5x-3[/latex] at [latex]x=-1[/latex].
33. Find the equation of the tangent line to the graph of [latex]f(x)=x^2+\dfrac{4}{x}-10[/latex] at [latex]x=8[/latex].
34. Find the equation of the tangent line to the graph of [latex]f(x)=(3x-x^2)(3-x-x^2)[/latex] at [latex]x=1[/latex].
35. Find the point on the graph of [latex]f(x)=x^3[/latex] such that the tangent line at that point has an [latex]x[/latex] intercept of 6.
36. Find the equation of the line passing through the point [latex]P(3,3)[/latex] and tangent to the graph of [latex]f(x)=\dfrac{6}{x-1}[/latex].
37. Determine all points on the graph of [latex]f(x)=x^3+x^2-x-1[/latex] for which
- the tangent line is horizontal
- the tangent line has a slope of [latex]-1[/latex]
38. Find a quadratic polynomial such that [latex]f(1)=5, \, f^{\prime}(1)=3[/latex], and [latex]f''(1)=-6[/latex].
39. A car driving along a freeway with traffic has traveled [latex]s(t)=t^3-6t^2+9t[/latex] meters in [latex]t[/latex] seconds.
- Determine the time in seconds when the velocity of the car is 0.
- Determine the acceleration of the car when the velocity is 0.
40. [T] A herring swimming along a straight line has traveled [latex]s(t)=\dfrac{t^2}{t^2+2}[/latex] feet in [latex]t[/latex] seconds.
Determine the velocity of the herring when it has traveled 3 seconds.
41. The population in millions of arctic flounder in the Atlantic Ocean is modeled by the function [latex]P(t)=\dfrac{8t+3}{0.2t^2+1}[/latex], where [latex]t[/latex] is measured in years.
- Determine the initial flounder population.
- Determine [latex]P^{\prime}(10)[/latex] and briefly interpret the result.
42. [T] The concentration of antibiotic in the bloodstream [latex]t[/latex] hours after being injected is given by the function [latex]C(t)=\dfrac{2t^2+t}{t^3+50}[/latex], where [latex]C[/latex] is measured in milligrams per liter of blood.
- Find the rate of change of [latex]C(t)[/latex].
- Determine the rate of change for [latex]t=8, \, 12, \, 24[/latex], and [latex]36[/latex].
- Briefly describe what seems to be occurring as the number of hours increases.
43. A book publisher has a cost function given by [latex]C(x)=\dfrac{x^3+2x+3}{x^2}[/latex], where [latex]x[/latex] is the number of copies of a book in thousands and [latex]C[/latex] is the cost, per book, measured in dollars. Evaluate [latex]C^{\prime}(2)[/latex] and explain its meaning.
44. [T] According to Newton’s law of universal gravitation, the force [latex]F[/latex] between two bodies of constant mass [latex]m_1[/latex] and [latex]m_2[/latex] is given by the formula [latex]F=\dfrac{G m_1 m_2}{d^2}[/latex], where [latex]G[/latex] is the gravitational constant and [latex]d[/latex] is the distance between the bodies.
- Suppose that [latex]G, \, m_1[/latex], and [latex]m_2[/latex] are constants. Find the rate of change of force [latex]F[/latex] with respect to distance [latex]d[/latex].
- Find the rate of change of force [latex]F[/latex] with gravitational constant [latex]G=6.67 \times 10^{-11} \, \text{Nm}^2/\text{kg}^2[/latex], on two bodies 10 meters apart, each with a mass of 1000 kilograms.
Candela Citations
- Calculus Volume 1. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/details/books/calculus-volume-1. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-1/pages/1-introduction