In the following exercises, verify by differentiation that ∫lnxdx=x(lnx−1)+C, then use appropriate changes of variables to compute the integral.
57. ∫lnxdx
(Hint:∫lnxdx=12∫xln(x2)dx))
58. ∫x2ln2xdx
Show Solution
19x3(ln(x3)−1)+C
59. ∫lnxx2dx(Hint:Setu=1x.)
60. ∫lnx√xdx(Hint:Setu=√x.)
61. Write an integral to express the area under the graph of y=1t from t=1 to ex and evaluate the integral.
62. Write an integral to express the area under the graph of y=et between t=0 and t=lnx, and evaluate the integral.
Show Solution
∫lnx0etdt=et|lnx0=elnx−e0=x−1
In the following exercises, use appropriate substitutions to express the trigonometric integrals in terms of compositions with logarithms.
63. ∫tan(2x)dx
64. ∫sin(3x)−cos(3x)sin(3x)+cos(3x)dx
Show Solution
−13ln(sin(3x)+cos(3x))
65. ∫xsin(x2)cos(x2)dx
66. ∫xcsc(x2)dx
Show Solution
−12ln|csc(x2)+cot(x2)|+C
67. ∫ln(cosx)tanxdx
68. ∫ln(cscx)cotxdx
Show Solution
−12(ln(cscx))2+C
69. ∫ex−e−xex+e−xdx
In the following exercises, evaluate the definite integral.
70. ∫211+2x+x23x+3x2+x3dx
Show Solution
13ln(267)
In the following exercises, integrate using the indicated substitution.
71. ∫xx−100dx;u=x−100
72. ∫y−1y+1dy;u=y+1
73. ∫1−x23x−x3dx;u=3x−x3
74. ∫sinx+cosxsinx−cosxdx;u=sinx−cosx
Show Solution
ln|sinx−cosx|+C
75. ∫e2x√1−e2xdx;u=e2x
76. ∫ln(x)√1−(lnx)2xdx;u=lnx
Show Solution
−13(1−(lnx2))3/2+C
In the following exercises, does the right-endpoint approximation overestimate or underestimate the exact area? Calculate the right endpoint estimate R50 and solve for the exact area.
37. [T] y=ex over [0,1]
38. [T] y=e−x over [0,1]
Show Solution
Exact solution: e−1e,R50=0.6258. Since f is decreasing, the right endpoint estimate underestimates the area.
39. [T] y=ln(x) over [1,2]
40. [T] y=x+1x2+2x+6 over [0,1]
Show Solution
Exact solution: 2ln(3)−ln(6)2,R50=0.2033. Since f is increasing, the right endpoint estimate overestimates the area.
41. [T] y=2x over [−1,0]
42. [T] y=−2−x over [0,1]
Show Solution
Exact solution: −1ln(4),R50=−0.7164. Since f is increasing, the right endpoint estimate overestimates the area (the actual area is a larger negative number).
Candela Citations
CC licensed content, Shared previously