In the following exercises (1-6), evaluate each integral in terms of an inverse trigonometric function.
1. [latex]{\displaystyle\int }_{0}^{\sqrt{3}\text{/}2}\frac{dx}{\sqrt{1-{x}^{2}}}[/latex]
Show Solution
2. [latex]{\displaystyle\int }_{-1\text{/}2}^{1\text{/}2}\frac{dx}{\sqrt{1-{x}^{2}}}[/latex]
3. [latex]{\displaystyle\int }_{\sqrt{3}}^{1}\frac{dx}{\sqrt{1+{x}^{2}}}[/latex]
Show Solution
4. [latex]{\displaystyle\int }_{1\text{/}\sqrt{3}}^{\sqrt{3}}\frac{dx}{1+{x}^{2}}[/latex]
5. [latex]{\displaystyle\int }_{1}^{\sqrt{2}}\frac{dx}{|x|\sqrt{{x}^{2}-1}}[/latex]
Show Solution
6. [latex]{\displaystyle\int }_{1}^{2\text{/}\sqrt{3}}\frac{dx}{|x|\sqrt{{x}^{2}-1}}[/latex]
Candela Citations
CC licensed content, Shared previously
- Calculus Volume 1. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/details/books/calculus-volume-1. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-1/pages/1-introduction