Summary of Arc Length of a Curve and Surface Area

Essential Concepts

  • The arc length of a curve can be calculated using a definite integral.
  • The arc length is first approximated using line segments, which generates a Riemann sum. Taking a limit then gives us the definite integral formula. The same process can be applied to functions of y.y.
  • The concepts used to calculate the arc length can be generalized to find the surface area of a surface of revolution.
  • The integrals generated by both the arc length and surface area formulas are often difficult to evaluate. It may be necessary to use a computer or calculator to approximate the values of the integrals.

Key Equations

  • Arc Length of a Function of xx
    Arc Length=ba1+[f(x)]2dx
  • Arc Length of a Function of y
    Arc Length=dc1+[g(y)]2dy
  • Surface Area of a Function of x
    Surface Area=ba(2πf(x)1+(f(x))2)dx

Glossary

arc length
the arc length of a curve can be thought of as the distance a person would travel along the path of the curve
frustum
a portion of a cone; a frustum is constructed by cutting the cone with a plane parallel to the base
surface area
the surface area of a solid is the total area of the outer layer of the object; for objects such as cubes or bricks, the surface area of the object is the sum of the areas of all of its faces