Summary of Integrals Involving Exponential and Logarithmic Functions

Essential Concepts

  • Exponential and logarithmic functions arise in many real-world applications, especially those involving growth and decay.
  • Substitution is often used to evaluate integrals involving exponential functions or logarithms.

Key Equations

  • Integrals of Exponential Functions
    exdx=ex+Cexdx=ex+C
    axdx=axlna+Caxdx=axlna+C
  • Integration Formulas Involving Logarithmic Functions
    x1dx=ln|x|+Cx1dx=ln|x|+C
    lnxdx=xlnxx+C=x(lnx1)+Clnxdx=xlnxx+C=x(lnx1)+C
    logaxdx=xlna(lnx1)+Clogaxdx=xlna(lnx1)+C