Essential Concepts
- The Mean Value Theorem for Integrals states that for a continuous function over a closed interval, there is a value [latex]c[/latex] such that [latex]f(c)[/latex] equals the average value of the function. See the Mean Value Theorem for Integrals.
- The Fundamental Theorem of Calculus, Part 1 shows the relationship between the derivative and the integral. See the Fundamental Theorem of Calculus, Part 1.
- The Fundamental Theorem of Calculus, Part 2 is a formula for evaluating a definite integral in terms of an antiderivative of its integrand. The total area under a curve can be found using this formula. See the Fundamental Theorem of Calculus, Part 2.
Key Equations
- Mean Value Theorem for Integrals
If [latex]f(x)[/latex] is continuous over an interval [latex]\left[a,b\right],[/latex] then there is at least one point [latex]c\in \left[a,b\right][/latex] such that [latex]f(c)=\frac{1}{b-a}{\displaystyle\int }_{a}^{b}f(x)dx.[/latex] - Fundamental Theorem of Calculus Part 1
If [latex]f(x)[/latex] is continuous over an interval [latex]\left[a,b\right],[/latex] and the function [latex]F(x)[/latex] is defined by [latex]F(x)={\displaystyle\int }_{a}^{x}f(t)dt,[/latex] then [latex]{F}^{\prime }(x)=f(x).[/latex] - Fundamental Theorem of Calculus Part 2
If [latex]f[/latex] is continuous over the interval [latex]\left[a,b\right][/latex] and [latex]F(x)[/latex] is any antiderivative of [latex]f(x),[/latex] then [latex]{\displaystyle\int }_{a}^{b}f(x)dx=F(b)-F(a).[/latex]
Glossary
- fundamental theorem of calculus
- the theorem, central to the entire development of calculus, that establishes the relationship between differentiation and integration
- fundamental theorem of calculus, part 1
- uses a definite integral to define an antiderivative of a function
- fundamental theorem of calculus, part 2
- (also, evaluation theorem) we can evaluate a definite integral by evaluating the antiderivative of the integrand at the endpoints of the interval and subtracting
- mean value theorem for integrals
- guarantees that a point [latex]c[/latex] exists such that [latex]f(c)[/latex] is equal to the average value of the function
Candela Citations
CC licensed content, Shared previously
- Calculus Volume 1. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/details/books/calculus-volume-1. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-1/pages/1-introduction