Essential Concepts
- If [latex]f[/latex] is continuous over [latex][a,b][/latex] and differentiable over [latex](a,b)[/latex] and [latex]f(a)=0=f(b)[/latex], then there exists a point [latex]c \in (a,b)[/latex] such that [latex]f^{\prime}(c)=0[/latex]. This is Rolle’s theorem.
- If [latex]f[/latex] is continuous over [latex][a,b][/latex] and differentiable over [latex](a,b)[/latex], then there exists a point [latex]c \in (a,b)[/latex] such that
[latex]f^{\prime}(c)=\dfrac{f(b)-f(a)}{b-a}[/latex].
This is the Mean Value Theorem.
- If [latex]f^{\prime}(x)=0[/latex] over an interval [latex]I[/latex], then [latex]f[/latex] is constant over [latex]I[/latex].
- If two differentiable functions [latex]f[/latex] and [latex]g[/latex] satisfy [latex]f^{\prime}(x)=g^{\prime}(x)[/latex] over [latex]I[/latex], then [latex]f(x)=g(x)+C[/latex] for some constant [latex]C[/latex].
- If [latex]f^{\prime}(x)>0[/latex] over an interval [latex]I[/latex], then [latex]f[/latex] is increasing over [latex]I[/latex]. If [latex]f^{\prime}(x)<0[/latex] over [latex]I[/latex], then [latex]f[/latex] is decreasing over [latex]I[/latex].
Glossary
- mean value theorem
- if [latex]f[/latex] is continuous over [latex][a,b][/latex] and differentiable over [latex](a,b)[/latex], then there exists [latex]c \in (a,b)[/latex] such that
[latex]f^{\prime}(c)=\dfrac{f(b)-f(a)}{b-a}[/latex]
- rolle’s theorem
- if [latex]f[/latex] is continuous over [latex][a,b][/latex] and differentiable over [latex](a,b)[/latex], and if [latex]f(a)=f(b)[/latex], then there exists [latex]c \in (a,b)[/latex] such that [latex]f^{\prime}(c)=0[/latex]
Candela Citations
CC licensed content, Shared previously
- Calculus Volume 1. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/details/books/calculus-volume-1. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-1/pages/1-introduction