Essential Concepts
- The analog of a tangent line to a curve is a tangent plane to a surface for functions of two variables.
- Tangent planes can be used to approximate values of functions near known values.
- A function is differentiable at a point if it is ”smooth” at that point (i.e., no corners or discontinuities exist at that point).
- The total differential can be used to approximate the change in a function z=f(x0,y0)z=f(x0,y0) at the point (x0,y0)(x0,y0) for given values of ΔxΔx and ΔyΔy.
Key Equations
- Tangent plane
z=f(x0,y0)+fx(x0,y0)(x−x0)+fy(x0,y0)(y−y0)z=f(x0,y0)+fx(x0,y0)(x−x0)+fy(x0,y0)(y−y0) - Linear approximation
L(x,y)=f(x0,y0)+fx(x0,y0)(x−x0)+fy(x0,y0)(y−y0)L(x,y)=f(x0,y0)+fx(x0,y0)(x−x0)+fy(x0,y0)(y−y0) - Total differential
dz=fx(x0,y0)dx+fy(x0,y0)(y−y0)dydz=fx(x0,y0)dx+fy(x0,y0)(y−y0)dy - Differentiability (two variables)
f(x,y)=f(x0,y0)+fx(x0,y0)(x−x0)+fy(x0,y0)(y−y0)+E(x,y)f(x,y)=f(x0,y0)+fx(x0,y0)(x−x0)+fy(x0,y0)(y−y0)+E(x,y), where the error term E satisfies lim(x,y)→(x0,y0)E(x,y)√(x−x0)2+(y−y0)2=0 - Differentiability (three variables)
f(x,y,z)=f(x0,y0,z0)+fx(x0,y0,z0)(x−x0)+fy(x0,y0,z0)(y−y0)+fz(x0,y0,z0)(z−z0)+E(x,y,z), where the error term E satisfies lim(x,y,z)→(x0,y0,z0)E(x,y,z)√(x−x0)2+(y−y0)2+(z−z0)2=0
Glossary
- differentiable
- a function f(x,y,z) is differentiable at (x0,y0) if f(x,y) can be expressed in the form f(x,y)=f(x0,y0)+fx(x0,y0)(x−x0)+fy(x0,y0)(y−y0)+E(x,y), where the error term E(x,y) satisfies lim(x,y)→(x0,y0)E(x,y)√(x−x0)2+(y−y0)2=0
- linear approximation
- given a function f(x,y) and a tangent plane to the function at a point (x0,y0) we can approximate f(x,y) for points near (x0,y0) using the tangent plane formula
- tangent plane
- given a function f(x,y) that is differentiable at a point (x0,y0) the equation of the tangent plane to the surface z=f(x,y) is given by z=f(x0,y0)+fx(x0,y0)(x−x0)+fy(x0,y0)(y−y0)
- total differential
- the total differential of the function f(x,y) at (x0,y0) is given by the formula dz=fx(x0,y0)dx+fy(x0,y0)dy
Candela Citations
CC licensed content, Shared previously
- Calculus Volume 3. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-3/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction