In Partial Derivatives we introduced the partial derivative. A function has two partial derivatives: and . These derivatives correspond to each of the independent variables and can be interpreted as instantaneous rates of change (that is, as slopes of a tangent line). For example, represents the slope of a tangent line passing through a given point on the surface defined by , assuming the tangent line is parallel to the -axis. Similarly, represents the slope of the tangent line parallel to the -axis. Now we consider the possibility of a tangent line parallel to neither axis.
Candela Citations
CC licensed content, Shared previously
- Calculus Volume 3. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-3/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction