Learning Objectives
- Find the parametric representations of a cylinder, a cone, and a sphere.
- Describe the surface integral of a scalar-valued function over a parametric surface.
Parametric Surfaces
A surface integral is similar to a line integral, except the integration is done over a surface rather than a path. In this sense, surface integrals expand on our study of line integrals. Just as with line integrals, there are two kinds of surface integrals: a surface integral of a scalar-valued function and a surface integral of a vector field.
However, before we can integrate over a surface, we need to consider the surface itself. Recall that to calculate a scalar or vector line integral over curve [latex]C[/latex], we first need to parameterize [latex]C[/latex]. In a similar way, to calculate a surface integral over surface [latex]S[/latex], we need to parameterize [latex]S[/latex]. That is, we need a working concept of a parameterized surface (or a parametric surface), in the same way that we already have a concept of a parameterized curve.
A parameterized surface is given by a description of the form
[latex]\large{{\bf{r}}(u,v)=\langle{x}(u,v),y(u,v),z(u,v)\rangle}[/latex].
Notice that this parameterization involves two parameters, [latex]u[/latex] and [latex]v[/latex], because a surface is two-dimensional, and therefore two variables are needed to trace out the surface. The parameters [latex]u[/latex] and [latex]v[/latex] vary over a region called the parameter domain, or parameter space—the set of points in the [latex]uv[/latex]-plane that can be substituted into [latex]{\bf{r}}[/latex]. Each choice of [latex]u[/latex] and [latex]v[/latex] in the parameter domain gives a point on the surface, just as each choice of a parameter [latex]t[/latex] gives a point on a parameterized curve. The entire surface is created by making all possible choices of [latex]u[/latex] and [latex]v[/latex] over the parameter domain.
definition
Given a parameterization of surface [latex]{\bf{r}}(u,v)=\langle{x}(u,v),y(u,v),z(u,v)\rangle[/latex], the parameter domain of the parameterization is the set of points in the [latex]uv[/latex]-plane that can be substituted into [latex]{\bf{r}}[/latex].
Example: parameterizing a cylinder
Describe the surface [latex]S[/latex] parameterized by
[latex]\large{{\bf{r}}(u,v)=\langle\cos{u},\sin{u},v\rangle,-\infty
Describe the surface with parameterization [latex]{\bf{r}}(u,v)=\langle2\cos{u},2\sin{u},v\rangle,0\leq{u}\leq2\pi,-\inftytry it
It follows from Example “Parameterizing a Cylinder” that we can parameterize all cylinders of the form [latex]x^{2}+y^{2}=R^{2}[/latex]. If [latex]S[/latex] is a cylinder given by equation [latex]x^{2}+y^{2}=R^{2}[/latex], then a parameterization of [latex]S[/latex] is
[latex]\large{{\bf{r}}(u,v)=\langle{R}\cos{u},R\sin{u},v\rangle,0\leq{u}\leq2\pi,-\infty We can also find different types of surfaces given their parameterization, or we can find a parameterization when we are given a surface. Describe the surface [latex]S[/latex] parameterized by [latex]{\bf{r}}(u,v)=\langle{u}\cos{v},u\sin{v},u^2\rangle,0\le{u}\le\infty,0\le{v}<2\pi[/latex]. Describe the surface parameterized by [latex]{\bf{r}}(u,v)=\langle{u}\cos{v},u\sin{v},u\rangle,-\inftyShow SolutionExample: describing a surface
try it
Example: finding a parameterization
Give a parameterization of the cone [latex]x^{2}+y^{2}=z^{2}[/latex] lying on or above the plane [latex]z=-2[/latex].
try it
Give a parameterization for the portion of cone [latex]x^{2}+y^{2}=z^{2}[/latex] lying in the first octant.
Watch the following video to see the worked solution to the above Try It
We have discussed parameterizations of various surfaces, but two important types of surfaces need a separate discussion: spheres and graphs of two-variable functions. To parameterize a sphere, it is easiest to use spherical coordinates. The sphere of radius [latex]\rho[/latex] centered at the origin is given by the parameterization
[latex]\large{{\bf{r}}(\phi,\theta)=\langle\rho\cos\theta\sin\phi,\rho\sin\theta\sin\phi,\rho\cos\phi\rangle, \ 0\leq\theta\leq2\pi, \ 0\leq\phi\leq\pi}[/latex].
The idea of this parameterization is that as [latex]\phi[/latex] sweeps downward from the positive [latex]z[/latex]-axis, a circle of radius [latex]\rho\sin\phi[/latex] is traced out by letting [latex]\theta[/latex] run from 0 to [latex]2\pi[/latex]. To see this, let [latex]\phi[/latex] be fixed. Then
[latex]\begin{aligned} x^2+y^2&=(\rho\cos\theta\sin\phi)^2+(\rho\sin\theta\sin\phi)^2 \\ &=\rho^2\sin^2\phi(\cos^2\theta+\sin^2\theta) \\ &=\rho^2\sin^2\phi \\ &=(\rho\sin\phi)^2 \\ \end{aligned}[/latex].
This results in the desired circle (Figure 5).
Finally, to parameterize the graph of a two-variable function, we first let [latex]z=f(x, y)[/latex] be a function of two variables. The simplest parameterization of the graph of [latex]f[/latex] is [latex]{\bf{r}}(x,y)=\langle{x},y,f(x,y)\rangle[/latex], where [latex]x[/latex] and [latex]y[/latex] vary over the domain of [latex]f[/latex] (Figure 6). For example, the graph of [latex]f(x, y)=x^{2}y[/latex] can be parameterized by [latex]{\bf{r}}(x,y)=\langle{x},y,x^2y\rangle[/latex], where the parameters [latex]x[/latex] and [latex]y[/latex] vary over the domain of [latex]f[/latex]. If we only care about a piece of the graph of [latex]f[/latex]—say, the piece of the graph over rectangle [latex][1,3]\times[2,5][/latex]—then we can restrict the parameter domain to give this piece of the surface:
[latex]\large{{\bf{r}}(x,y)=\langle{x},y,x^2y\rangle, \ 1\leq{x}\leq3, \ 2\leq{y}\leq5}[/latex].
Similarly, if [latex]S[/latex] is a surface given by equation [latex]x=g(y, z)[/latex] or equation [latex]y=h(x, z)[/latex], then a parameterization of [latex]S[/latex] is
[latex]{\bf{r}}(y,z)=\langle{g}(y,z),y,z\rangle[/latex] or [latex]{\bf{r}}(x,z)=\langle{x},h(x,z),z\rangle[/latex], respectively. For example, the graph of paraboloid [latex]2y=x^{2}+z^{2}[/latex] can be parameterized by [latex]{\bf{r}}(x,z)=\langle{x},\frac{x^2+z^2}2,z\rangle[/latex], [latex]0\leq{x}\leq\infty, \ 0\leq{z}\leq\infty[/latex]. Notice that we do not need to vary over the entire domain of [latex]y[/latex] because [latex]x[/latex] and [latex]z[/latex] are squared.
Let’s now generalize the notions of smoothness and regularity to a parametric surface. Recall that curve parameterization [latex]{\bf{r}}(t)[/latex], [latex]a\leq{t}\leq{b}[/latex] is regular if [latex]{\bf{r}}^\prime(t)\ne0[/latex] for all [latex]t[/latex] in [latex][a,b][/latex]. For a curve, this condition ensures that the image of [latex]{\bf{r}}[/latex] really is a curve, and not just a point. For example, consider curve parameterization [latex]{\bf{r}}(t)=\langle1,2\rangle[/latex], [latex]0\leq{t}\leq5[/latex]. The image of this parameterization is simply point [latex](1, 2)[/latex], which is not a curve. Notice also that [latex]{\bf{r}}^\prime(t)=0[/latex]. The fact that the de
rivative is zero indicates we are not actually looking at a curve.
Analogously, we would like a notion of regularity for surfaces so that a surface parameterization really does trace out a surface. To motivate the definition of regularity of a surface parameterization, consider parameterization
[latex]\large{{\bf{r}}(u,v)=\langle0,\cos{v},1\rangle, \ 0\leq{u}\leq1, \ 0\leq{v}\leq\pi}[/latex].
Although this parameterization appears to be the parameterization of a surface, notice that the image is actually a line (Figure 7). How could we avoid parameterizations such as this? Parameterizations that do not give an actual surface? Notice that [latex]{\bf{r}}_u=\langle0,0,0\rangle[/latex] and [latex]{\bf{r}}_v=\langle0,-\sin{v},0\rangle[/latex], and the corresponding cross product is zero. The analog of the condition [latex]{\bf{r}}^\prime(t)=0[/latex] is that [latex]{\bf{r}}_u\times{\bf{r}}_v[/latex] is not zero for point [latex](u, v)[/latex] in the parameter domain, which is a regular parameterization.
definition
Parameterization [latex]{\bf{r}}(u,v)=\langle(x(u,v),y(u,v),z(u,v)\rangle[/latex] is a regular parameterization if [latex]{\bf{r}}_u\times{\bf{r}}_v[/latex] is not zero for point [latex](u, v)[/latex] in the parameter domain.
If parameterization [latex]{\bf{r}}[/latex] is regular, then the image of [latex]{\bf{r}}[/latex] is a two-dimensional object, as a surface should be. Throughout this chapter, parameterizations [latex]{\bf{r}}(u,v)=\langle(x(u,v),y(u,v),z(u,v)\rangle[/latex] are assumed to be regular.
Recall that curve parameterization [latex]{\bf{r}}(t)[/latex], [latex]a\leq{t}\leq{b}[/latex] is smooth if [latex]{\bf{r}}^\prime(t)[/latex] is continuous and [latex]{\bf{r}}^\prime(t)\ne0[/latex] for all [latex]t[/latex] in [latex][a,b][/latex]. Informally, a curve parameterization is smooth if the resulting curve has no sharp corners. The definition of a smooth surface parameterization is similar. Informally, a surface parameterization is smooth if the resulting surface has no sharp corners.
definition
A surface parameterization [latex]{\bf{r}}(u,v)=\langle(x(u,v),y(u,v),z(u,v)\rangle[/latex] is smooth if vector [latex]{\bf{r}}_u\times{\bf{r}}_v[/latex] is not zero for any choice of [latex]u[/latex] and [latex]v[/latex] in the parameter domain.
A surface may also be piecewise smooth if it has smooth faces but also has locations where the directional derivatives do not exist.
Example: identifying smooth and nonsmooth surfaces
Which of the figures in Figure 8 is smooth?
Key Takeaways
Is the surface parameterization [latex]{\bf{r}}(u,v)=\langle{u}^{2v},v+1,\sin{u}\rangle[/latex], [latex]0\leq{u}\leq2, \ 0\leq{v}\leq3[/latex] smooth?
Try It
Surface Area of a Parametric Surface
Our goal is to define a surface integral, and as a first step we have examined how to parameterize a surface. The second step is to define the surface area of a parametric surface. The notation needed to develop this definition is used throughout the rest of this chapter.
Let [latex]S[/latex] be a surface with parameterization [latex]{\bf{r}}(u,v)=\langle{x}(u,v),y(u,v),z(u,v)\rangle[/latex] over some parameter domain [latex]D[/latex]. We assume here and throughout that the surface parameterization [latex]{\bf{r}}(u,v)=\langle{x}(u,v),{y}(u,v),{z}(u,v)\rangle[/latex] is continuously differentiable—meaning, each component function has continuous partial derivatives. Assume for the sake of simplicity that [latex]D[/latex] is a rectangle (although the following material can be extended to handle nonrectangular parameter domains). Divide rectangle [latex]D[/latex] into subrectangles [latex]D_{ij}[/latex] with horizontal width [latex]\nabla{u}[/latex] and vertical length [latex]\nabla{v}[/latex]. Suppose that [latex]i[/latex] ranges from [latex]1[/latex] to [latex]m[/latex] and [latex]j[/latex] ranges from [latex]1[/latex] to [latex]n[/latex] so that [latex]D[/latex] is subdivided into [latex]mn[/latex] rectangles. This division of [latex]D[/latex] into subrectangles gives a corresponding division of surface [latex]S[/latex] into pieces [latex]S_{ij}[/latex]. Choose point [latex]P_{ij}[/latex] in each piece [latex]S_{ij}[/latex]. Point [latex]P_{ij}[/latex] corresponds to point [latex](u_i,v_j)[/latex] in the parameter domain.
Note that we can form a grid with lines that are parallel to the [latex]u[/latex]-axis and the [latex]v[/latex]-axis in the [latex]uv[/latex]-plane. These grid lines correspond to a set of grid curves on surface [latex]S[/latex] that is parameterized by [latex]{\bf{r}}(u,v)[/latex]. Without loss of generality, we assume that [latex]P_{ij}[/latex] is located at the corner of two grid curves, as in Figure 9. If we think of [latex]{\bf{r}}[/latex] as a mapping from the [latex]uv[/latex]-plane to [latex]\mathbb{R}^3[/latex], the grid curves are the image of the grid lines under [latex]{\bf{r}}[/latex]. To be precise, consider the grid lines that go through point [latex](u_i,v_j)[/latex]. One line is given by [latex]x=u_i[/latex], [latex]y=v[/latex]; the other is given by [latex]x=u[/latex], [latex]y=v_j[/latex]. In the first grid line, the horizontal component is held constant, yielding a vertical line through [latex](u_i,v_j)[/latex]. In the second grid line, the vertical component is held constant, yielding a horizontal line through [latex](u_i,v_j)[/latex]. The corresponding grid curves are [latex]{\bf{r}}(u_i,v)[/latex] and [latex]{\bf{r}}(u,v_j)[/latex], and these curves intersect at point [latex]P_{ij}[/latex].
Now consider the vectors that are tangent to these grid curves. For grid curve [latex]{\bf{r}}(u_i,v)[/latex] the tangent vector at [latex]P_{ij}[/latex] is
[latex]{\bf{t}}_v(P_{ij})={\bf{r}}_v(u_i,v_j)=\langle{x}_v(u_i,v_j),y_v(u_i,v_j),z_v(u_i,v_j)\rangle[/latex].
For grid curve [latex]{\bf{r}}(u,v_j)[/latex], the tangent vector at [latex]P_{ij}[/latex] is
[latex]{\bf{t}}_u(P_{ij})={\bf{r}}_y(u_i,v_j)=\langle{x}_v(u_i,v_j),y_u(u_i,v_j),z_u(u_i,v_j)\rangle[/latex].
If vector [latex]{\bf{N}}={\bf{t}}_u(P_{ij})\times{\bf{t}}_u(P_{ij}[/latex] exists and is not zero, then the tangent plane at [latex]P_{ij}[/latex] exists (Figure 10). If piece [latex]S_{ij}[/latex] is small enough, then the tangent plane at point [latex]P_{ij}[/latex] is a good approximation of piece [latex]S_{ij}[/latex].
The tangent plane at [latex]P_{ij}[/latex] contains vectors [latex]{\bf{t}}_u(P_{ij})[/latex] and [latex]{\bf{t}}_v(P_{ij})[/latex], and therefore the parallelogram spanned by [latex]{\bf{t}}_u(P_{ij})[/latex] and [latex]{\bf{t}}_v(P_{ij})[/latex] is in the tangent plane. Since the original rectangle in the [latex]uv[/latex]-plane corresponding to [latex]S_{ij}[/latex] has width [latex]\Delta{u}[/latex] and length [latex]\Delta{v}[/latex], the parallelogram that we use to approximate [latex]S_{ij}[/latex] is the parallelogram spanned by [latex]\Delta{u}{\bf{t}}_u(P_{ij})[/latex] and [latex]\Delta{v}{\bf{t}}_v(P_{ij})[/latex]. In other words, we scale the tangent vectors by the constants [latex]\Delta{u}[/latex] and [latex]\Delta{v}[/latex] to match the scale of the original division of rectangles in the parameter domain. Therefore, the area of the parallelogram used to approximate the area of [latex]S_{ij}[/latex] is
[latex]\Delta{S_{ij}}\approx||(\Delta{u}{\bf{t}}_u(P_{ij}))\times(\Delta{v}{\bf{t}}_v(P_{ij}))=||{\bf{t}}_u(P_{ij})\times{\bf{t}}_v(P_{ij})||\Delta{u}\Delta{v}[/latex].
Varying point [latex]P_{ij}[/latex] over all pieces [latex]S_{ij}[/latex] and the previous approximation leads to the following definition of surface area of a parametric surface (Figure 11).
definition
Let [latex]{\bf{r}}(u,v)=\langle(x(u,v),y(u,v),z(u,v)\rangle[/latex] with parameter domain [latex]D[/latex] be a smooth parameterization of surface [latex]S[/latex]. Furthermore, assume that [latex]S[/latex] is traced out only once as [latex](u, v)[/latex] varies over [latex]D[/latex]. The surface area of [latex]S[/latex] is
[latex]\large{\displaystyle\iint_D||{\bf{t}}_u\times{\bf{t}}_v||dA}[/latex],
where [latex]{\bf{t}}_u=\left\langle\frac{\partial{x}}{\partial{u}},\frac{\partial{y}}{\partial{u}},\frac{\partial{z}}{\partial{u}}\right\rangle\text{ and }{\bf{t}}_v=\left\langle\frac{\partial{x}}{\partial{v}},\frac{\partial{y}}{\partial{v}},\frac{\partial{z}}{\partial{v}}\right\rangle[/latex].
Example: calculating surface area
Calculate the lateral surface area (the area of the “side,” not including the base) of the right circular cone with height [latex]h[/latex] and radius [latex]r[/latex].
try it
Find the surface area of the surface with parameterization [latex]{\bf{r}}(u,v)=\langle{u}+v,u^2,2v\rangle[/latex], [latex]0\leq{u}\leq3[/latex], [latex]0\leq{v}\leq2[/latex].
Watch the following video to see the worked solution to the above Try It
Example: calculating surface area
Show that the surface area of the sphere [latex]x^{2}+y^{2}+z^{2}=r^{2}[/latex] is [latex]4\pi{r}^2[/latex].
try it
Show that the surface area of cylinder [latex]x^2+y^2=r^2[/latex], [latex]0\leq{z}\leq{h}[/latex] is [latex]2\pi{r}h[/latex]. Notice that this cylinder does not include the top and bottom circles.
In addition to parameterizing surfaces given by equations or standard geometric shapes such as cones and spheres, we can also parameterize surfaces of revolution. Therefore, we can calculate the surface area of a surface of revolution by using the same techniques. Let [latex]y=f(x)\geq0[/latex] be a positive single-variable function on the domain [latex]a\leq{x}\leq{b}[/latex] and let [latex]S[/latex] be the surface obtained by rotating [latex]f[/latex] about the [latex]x[/latex]-axis (Figure 13). Let [latex]\theta[/latex] be the angle of rotation. Then, [latex]S[/latex] can be parameterized with parameters [latex]x[/latex] and [latex]\theta[/latex] by
[latex]{\bf{r}}(x,\theta)=\langle{x},f(x)\cos\theta,f(x)\sin\theta\rangle, \ a\leq{x}\leq{b}, \ 0\leq{x}\leq2\pi[/latex].
Example: calculating surface area
Find the area of the surface of revolution obtained by rotating [latex]y=x^2[/latex], [latex]0\leq{x}\leq{b}[/latex] about the [latex]x[/latex]-axis (Figure 14).
try it
Use The Surface Area Equation to find the area of the surface of revolution obtained by rotating curve [latex]y=\sin{x}, \ 0\leq{x}\leq\pi[/latex] about the [latex]x[/latex]-axis.
Candela Citations
- CP 6.49. Authored by: Ryan Melton. License: CC BY: Attribution
- CP 6.51. Authored by: Ryan Melton. License: CC BY: Attribution
- Calculus Volume 3. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-3/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction