-
- Assume y(x)=∞∑n=0anxny(x)=∞∑n=0anxn (step 1). Then, y′(x)=∞∑n=1nanxn−1y′(x)=∞∑n=1nanxn−1 and y′′(x)=∞∑n=2n(n−1)anxn−2y′′(x)=∞∑n=2n(n−1)anxn−2 (step 2). We want to find values for the coefficients anan such that
y′′−y=0∞∑n=2n(n−1)anxn−2−∞∑n=0anxn=0y′′−y=0∞∑n=2n(n−1)anxn−2−∞∑n=0anxn=0 (step 3).
We want the indices on our sums to match so that we can express them using a single summation. That is, we want to rewrite the first summation so that it starts with n=0n=0.
To re-index the first term, replace nn with n+2n+2 inside the sum, and change the lower summation limit to n=0n=0. We get
∞∑n=2n(n−1)anxn−2=∞∑n=0(n+2)(n+1)an+2xn∞∑n=2n(n−1)anxn−2=∞∑n=0(n+2)(n+1)an+2xn.
This gives
∞∑n=0(n+2)(n+1)an+2xn−∞∑n=0anxn=0∞∑n=0[(n+2)(n+1)an+2−an]xn=0 (step 4).∞∑n=0(n+2)(n+1)an+2xn−∞∑n=0anxn=0∞∑n=0[(n+2)(n+1)an+2−an]xn=0 (step 4).
Because power series expansions of functions are unique, this equation can be true only if the coefficients of each power of xx are zero. So we have
(n+2)(n+1)an+2−an=0 for n=0,1,2,…(n+2)(n+1)an+2−an=0 for n=0,1,2,…
This recurrence relationship allows us to express each coefficient anan in terms of the coefficient two terms earlier. This yields one expression for even values of nn and another expression for odd values of nn. Looking first at the equations involving even values of nn, we see that
a2=a02a4=a24⋅3=a04!a6=a46⋅5=a06!⋮a2=a02a4=a24⋅3=a04!a6=a46⋅5=a06!⋮
Thus, in general, when nn is even, an=a0n!an=a0n! (step 5).
For the equations involving odd values of nn, we see that
a3=a13⋅2=a13!a5=a35⋅4=a15!a7=a57⋅6=a17!⋮a3=a13⋅2=a13!a5=a35⋅4=a15!a7=a57⋅6=a17!⋮
Therefore, in general, when nn is odd, an=a1n!an=a1n! (step 5 continued).
Putting this together, we have
y(x)=∞∑n=0anxn=a0+a1x+a02x2+a13!x3+a04!x4+a15!x5+⋯y(x)=∞∑n=0anxn=a0+a1x+a02x2+a13!x3+a04!x4+a15!x5+⋯.
Re-indexing the sums to account for the even and odd values of nn separately, we obtain
y(x)=a0∞∑k=01(2k)!x2k+a1∞∑k=01(2k+1)!x2k+1y(x)=a0∞∑k=01(2k)!x2k+a1∞∑k=01(2k+1)!x2k+1.
Analysis for part a.
As expected for a second-order differential equation, this solution depends on two arbitrary constants. However, note that our differential equation is a constant-coefficient differential equation, yet the power series solution does not appear to have the familiar form (containing exponential functions) that we are used to seeing. Furthermore, since y(x)=c1ex+c2e−xy(x)=c1ex+c2e−x is the general solution to this equation, we must be able to write any solution in this form, and it is not clear whether the power series solution we just found can, in fact, be written in that form.
Fortunately, after writing the power series representations of exex and e−xe−x, and doing some algebra, we find that if we choose
c0=(a0+a1)2, c1=(a0−a1)2c0=(a0+a1)2, c1=(a0−a1)2,
we then have a0=c0+c1a0=c0+c1 and a1=c0−c1a1=c0−c1, and
y(x)=a0+a1x+a02x2+a13!x3+a04!x4+a05!x5+…=(c0+c1)+(c0−c1)x+(c0+c1)2x2+(c0−c1)3!x3+(c0+c1)4!x4+(c0−c1)5!x5+…=c0∞∑n=0xnn!+c1∞∑n=0(−x)nn!=c0ex+c1e−xy(x)=a0+a1x+a02x2+a13!x3+a04!x4+a05!x5+…=(c0+c1)+(c0−c1)x+(c0+c1)2x2+(c0−c1)3!x3+(c0+c1)4!x4+(c0−c1)5!x5+…=c0∞∑n=0xnn!+c1∞∑n=0(−x)nn!=c0ex+c1e−x.
So we have, in fact, found the same general solution. Note that this choice of c1c1 and c2c2 is not obvious. This is a case when we know what the answer should be, and have essentially “reverse-engineered” our choice of coefficients.
- Assume y(x)=∞∑n=0anxny(x)=∞∑n=0anxn (step 1). Then, y′(x)=∞∑n=1nanxn−1y′(x)=∞∑n=1nanxn−1 and y′′=∞∑n=2n(n−1)anxn−2y′′=∞∑n=2n(n−1)anxn−2 (step 2). We want to find values for the coefficients anan such that
(x2−1)y′′+6xy′+4y=−4(x2−1)∞∑n=2n(n−1)anxn−2+6x∞∑n=1nanxn−1+4∞∑n=0anxn=−4x2∞∑n=2n(n−1)anxn−2−∞∑n=2n(n−1)anxn−2+6x∞∑n=1nanxn−1+4∞∑n=0anxn=−4(x2−1)y′′+6xy′+4y=−4(x2−1)∞∑n=2n(n−1)anxn−2+6x∞∑n=1nanxn−1+4∞∑n=0anxn=−4x2∞∑n=2n(n−1)anxn−2−∞∑n=2n(n−1)anxn−2+6x∞∑n=1nanxn−1+4∞∑n=0anxn=−4.
Taking the external factors inside the summations, we get
∞∑n=2n(n−1)anxn−∞∑n=2n(n−1)anxn−2+∞∑n=16nanxn+∞∑n=04anxn=−4∞∑n=2n(n−1)anxn−∞∑n=2n(n−1)anxn−2+∞∑n=16nanxn+∞∑n=04anxn=−4 (step 3).
Now, in the first summation, we see that when n=0n=0 orn=1n=1, the term evaluates to zero, so we can add these terms back into our sum to get
∞∑n=2n(n−1)anxn=∞∑n=0n(n−1)anxn∞∑n=2n(n−1)anxn=∞∑n=0n(n−1)anxn.
Similarly, in the third term, we see that when n=0n=0, the expression evaluates to zero, so we can add that term back in as well. We have
∞∑n=16nanxn=∞∑n=06nanxn∞∑n=16nanxn=∞∑n=06nanxn.
Then, we need only shift the indices in our second term. We get
∞∑n=2n(n−1)anxn−2=∞∑n=0(n+2)(n+1)an+2xn∞∑n=2n(n−1)anxn−2=∞∑n=0(n+2)(n+1)an+2xn
Thus, we have
∞∑n=0n(n−1)anxn−∞∑n=0(n+2)(n+1)an+2xn+∞∑n=06nanxn+∞∑n=04anxn=−4 (step 4).∞∑n=0[n(n−1)an−(n+2)(n+1)an+26nan+4an]xn=−4∞∑n=0[(n2−n)an+6nan+4an−(n+2)(n+1)an+2]xn=−4∞∑n=0[n2an+5nan+4an−(n+2)(n+1)an+2]xn=−4∞∑n=0[(n2+5n+4)an−(n+2)(n+1)an+2]xn=−4∞∑n=0[(n+4)(n+1)an−(n+2)(n+1)an+2]xn=−4∞∑n=0n(n−1)anxn−∞∑n=0(n+2)(n+1)an+2xn+∞∑n=06nanxn+∞∑n=04anxn=−4 (step 4).∞∑n=0[n(n−1)an−(n+2)(n+1)an+26nan+4an]xn=−4∞∑n=0[(n2−n)an+6nan+4an−(n+2)(n+1)an+2]xn=−4∞∑n=0[n2an+5nan+4an−(n+2)(n+1)an+2]xn=−4∞∑n=0[(n2+5n+4)an−(n+2)(n+1)an+2]xn=−4∞∑n=0[(n+4)(n+1)an−(n+2)(n+1)an+2]xn=−4
Looking at the coefficients of each power of xx, we see that the constant term must be equal to −4−4 and the coefficients of all other powers of xx must be zero. Then, looking first at the constant term,
4a0−2a2=−4a2=2a0+24a0−2a2=−4a2=2a0+2 (step 3).
For n≥1n≥1, we have
(n+4)(n+1)an−(n+2)(n+1)aa+2=0(n+1)[(n+4)an−(n+2)an+2]=0(n+4)(n+1)an−(n+2)(n+1)aa+2=0(n+1)[(n+4)an−(n+2)an+2]=0.
Since n≥1n≥1, n+1≠0n+1≠0, we see that
(n+4)an−(n+2)an+2=0(n+4)an−(n+2)an+2=0.
and thus
an+2=n+4n+2anan+2=n+4n+2an.
For even values of nn, we have
a4=64(2a0+2)=3a0+3a6=86(3a0+3)=4a0+4⋮a4=64(2a0+2)=3a0+3a6=86(3a0+3)=4a0+4⋮.
In general, a2k=(k+1)(a0+1)a2k=(k+1)(a0+1) (step 5).
For odd values of nn, we have
a3=53a1a5=75a3=73a1a7=97a5=93a1=3a1⋮a3=53a1a5=75a3=73a1a7=97a5=93a1=3a1⋮.
In general, a2k+1=2k+33a1a2k+1=2k+33a1 (step 5 continued).
Putting this together, we have
y(x)=∞∑k=0(k+1)(a0+1)x2k+∞∑k=0(2k+33)a1x2k+1y(x)=∞∑k=0(k+1)(a0+1)x2k+∞∑k=0(2k+33)a1x2k+1 (step 6).