Learning Outcomes
- Evaluate trigonometric functions using the unit circle
- Recognize the basic limit laws
- Use the limit laws to evaluate the limit of a function
- Recognize when to apply L’Hôpital’s rule
In the Vector-Valued Functions and Space Curves section, we will define and develop skills needed to understand and work with vector-valued functions. Here we will review how to evaluate trigonometric functions at specific angle measures, apply limit laws, and apply L’Hôpital’s rule.
Evaluate Trigonometric Functions Using the Unit Circle
(also in Module 1, Skills Review for Polar Coordinates)
The unit circle tells us the value of cosine and sine at any of the given angle measures seen below. The first coordinate in each ordered pair is the value of cosine at the given angle measure, while the second coordinate in each ordered pair is the value of sine at the given angle measure. You will learn that all trigonometric functions can be written in terms of sine and cosine. Thus, if you can evaluate sine and cosine at various angle values, you can also evaluate the other trigonometric functions at various angle values. Take time to learn the [latex]\left(x,y\right)[/latex] coordinates of all of the major angles in the first quadrant of the unit circle.
Remember, every angle in quadrant two, three, or four has a reference angle that lies in quadrant one. The quadrant of the original angle only affects the sign (positive or negative) of a trigonometric function’s value at a given angle.
A General Note: Evaluating Tangent, Secant, Cosecant, and Cotangent Functions
If [latex] \theta[/latex] is an angle measure, then, using the unit circle,
[latex]\begin{gathered}\tan \theta=\frac{sin \theta}{cos \theta}\\ \sec \theta=\frac{1}{cos \theta}\\ \csc t=\frac{1}{sin \theta}\\ \cot \theta=\frac{cos \theta}{sin \theta}\end{gathered}[/latex]
Example: Using the Unit Circle to Find the Value of Trigonometric Functions
Find [latex]\sin \theta,\cos \theta,\tan \theta,\sec \theta,\csc \theta[/latex], and [latex]\cot \theta[/latex] when [latex] \theta=\frac{\pi }{3}[/latex].
Try It
Below are the values of all six trigonometric functions evaluated at common angle measures from Quadrant I.
Angle | [latex]0[/latex] | [latex]\frac{\pi }{6},\text{ or }{30}^{\circ}[/latex] | [latex]\frac{\pi }{4},\text{ or } {45}^{\circ }[/latex] | [latex]\frac{\pi }{3},\text{ or }{60}^{\circ }[/latex] | [latex]\frac{\pi }{2},\text{ or }{90}^{\circ }[/latex] |
Cosine | 1 | [latex]\frac{\sqrt{3}}{2}[/latex] | [latex]\frac{\sqrt{2}}{2}[/latex] | [latex]\frac{1}{2}[/latex] | 0 |
Sine | 0 | [latex]\frac{1}{2}[/latex] | [latex]\frac{\sqrt{2}}{2}[/latex] | [latex]\frac{\sqrt{3}}{2}[/latex] | 1 |
Tangent | 0 | [latex]\frac{\sqrt{3}}{3}[/latex] | 1 | [latex]\sqrt{3}[/latex] | Undefined |
Secant | 1 | [latex]\frac{2\sqrt{3}}{3}[/latex] | [latex]\sqrt{2}[/latex] | 2 | Undefined |
Cosecant | Undefined | 2 | [latex]\sqrt{2}[/latex] | [latex]\frac{2\sqrt{3}}{3}[/latex] | 1 |
Cotangent | Undefined | [latex]\sqrt{3}[/latex] | 1 | [latex]\frac{\sqrt{3}}{3}[/latex] | 0 |
Limit Laws
The basic limit laws stated below, together with the other limit laws, allow us to evaluate limits of many algebraic functions.
Basic Limit Results
For any real number [latex]a[/latex] and any constant [latex]c[/latex],
-
[latex]\underset{x\to a}{\lim}x=a[/latex]
-
[latex]\underset{x\to a}{\lim}c=c[/latex]
Example: Evaluating a Basic Limit
Evaluate each of the following limits using the basic limit results above.
- [latex]\underset{x\to 2}{\lim}x[/latex]
- [latex]\underset{x\to 2}{\lim}5[/latex]
Try It
We now take a look at the limit laws, the individual properties of limits. The proofs that these laws hold are omitted here.
Limit Laws
Let [latex]f(x)[/latex] and [latex]g(x)[/latex] be defined for all [latex]x\ne a[/latex] over some open interval containing [latex]a[/latex]. Assume that [latex]L[/latex] and [latex]M[/latex] are real numbers such that [latex]\underset{x\to a}{\lim}f(x)=L[/latex] and [latex]\underset{x\to a}{\lim}g(x)=M[/latex]. Let [latex]c[/latex] be a constant. Then, each of the following statements holds:
Sum law for limits: [latex]\underset{x\to a}{\lim}(f(x)+g(x))=\underset{x\to a}{\lim}f(x)+\underset{x\to a}{\lim}g(x)=L+M[/latex]
Difference law for limits: [latex]\underset{x\to a}{\lim}(f(x)-g(x))=\underset{x\to a}{\lim}f(x)-\underset{x\to a}{\lim}g(x)=L-M[/latex]
Constant multiple law for limits: [latex]\underset{x\to a}{\lim}cf(x)=c \cdot \underset{x\to a}{\lim}f(x)=cL[/latex]
Product law for limits: [latex]\underset{x\to a}{\lim}(f(x) \cdot g(x))=\underset{x\to a}{\lim}f(x) \cdot \underset{x\to a}{\lim}g(x)=L \cdot M[/latex]
Quotient law for limits: [latex]\underset{x\to a}{\lim}\dfrac{f(x)}{g(x)}=\dfrac{\underset{x\to a}{\lim}f(x)}{\underset{x\to a}{\lim}g(x)}=\frac{L}{M}[/latex] for [latex]M\ne 0[/latex]
Power law for limits: [latex]\underset{x\to a}{\lim}(f(x))^n=(\underset{x\to a}{\lim}f(x))^n=L^n[/latex] for every positive integer [latex]n[/latex].
Root law for limits: [latex]\underset{x\to a}{\lim}\sqrt[n]{f(x)}=\sqrt[n]{\underset{x\to a}{\lim}f(x)}=\sqrt[n]{L}[/latex] for all [latex]L[/latex] if [latex]n[/latex] is odd and for [latex]L\ge 0[/latex] if [latex]n[/latex] is even
We now practice applying these limit laws to evaluate a limit.
Example: Evaluating a Limit Using Limit Laws
Use the limit laws to evaluate [latex]\underset{x\to -3}{\lim}(4x+2)[/latex].
Example: Using Limit Laws Repeatedly
Use the limit laws to evaluate [latex]\underset{x\to 2}{\lim}\dfrac{2x^2-3x+1}{x^3+4}[/latex].
Try It
Use the limit laws to evaluate [latex]\underset{x\to 6}{\lim}(2x-1)\sqrt{x+4}[/latex]. In each step, indicate the limit law applied.
Limits of Polynomial and Rational Functions
By now you have probably noticed that, in each of the previous examples, it has been the case that [latex]\underset{x\to a}{\lim}f(x)=f(a)[/latex]. This is not always true, but it does hold for all polynomials for any choice of [latex]a[/latex] and for all rational functions at all values of [latex]a[/latex] for which the rational function is defined.
Limits of Polynomial and Rational Functions
Let [latex]p(x)[/latex] and [latex]q(x)[/latex] be polynomial functions. Let [latex]a[/latex] be a real number. Then,
To see that this theorem holds, consider the polynomial [latex]p(x)=c_nx^n+c_{n-1}x^{n-1}+\cdots +c_1x+c_0[/latex]. By applying the sum, constant multiple, and power laws, we end up with
It now follows from the quotient law that if [latex]p(x)[/latex] and [latex]q(x)[/latex] are polynomials for which [latex]q(a)\ne 0[/latex], then
The example below applies this result.
Example: Evaluating a Limit of a Rational Function
Evaluate the [latex]\underset{x\to 3}{\lim}\dfrac{2x^2-3x+1}{5x+4}[/latex].
Try It
Evaluate [latex]\underset{x\to -2}{\lim}(3x^3-2x+7)[/latex].
Apply L’Hopital’s Rule
Indeterminate Form of Type [latex]\frac{0}{0}[/latex]
L’Hôpital’s rule can be used to evaluate limits involving the quotient of two functions. Consider
If [latex]\underset{x\to a}{\lim}f(x)=L_1[/latex] and [latex]\underset{x\to a}{\lim}g(x)=L_2 \ne 0[/latex], then
However, what happens if [latex]\underset{x\to a}{\lim}f(x)=0[/latex] and [latex]\underset{x\to a}{\lim}g(x)=0[/latex]? We call this one of the indeterminate forms, of type [latex]\frac{0}{0}[/latex]. This is considered an indeterminate form because we cannot determine the exact behavior of [latex]\frac{f(x)}{g(x)}[/latex] as [latex]x\to a[/latex] without further analysis.
L’Hôpital’s Rule (0/0 Case)
Suppose [latex]f[/latex] and [latex]g[/latex] are differentiable functions over an open interval containing [latex]a[/latex], except possibly at [latex]a[/latex]. If [latex]\underset{x\to a}{\lim}f(x)=0[/latex] and [latex]\underset{x\to a}{\lim}g(x)=0[/latex], then
assuming the limit on the right exists or is [latex]\infty [/latex] or [latex]−\infty[/latex]. This result also holds if we are considering one-sided limits, or if [latex]a=\infty[/latex] or [latex]-\infty[/latex].
Example: Applying L’Hôpital’s Rule (0/0 Case)
Evaluate each of the following limits by applying L’Hôpital’s rule.
- [latex]\underset{x\to 0}{\lim}\dfrac{1- \cos x}{x}[/latex]
- [latex]\underset{x\to 1}{\lim}\dfrac{\sin (\pi x)}{\ln x}[/latex]
- [latex]\underset{x\to \infty }{\lim}\dfrac{e^{\frac{1}{x}}-1}{\frac{1}{x}}[/latex]
- [latex]\underset{x\to 0}{\lim}\dfrac{\sin x-x}{x^2}[/latex]
Try It
Evaluate [latex]\underset{x\to 0}{\lim}\dfrac{x}{\tan x}[/latex].
Indeterminate Form of Type [latex]\frac{\infty}{\infty}[/latex]
We can also use L’Hôpital’s rule to evaluate limits of quotients [latex]\frac{f(x)}{g(x)}[/latex] in which [latex]f(x)\to \pm \infty [/latex] and [latex]g(x)\to \pm \infty[/latex]. Limits of this form are classified as indeterminate forms of type [latex]\infty / \infty[/latex]. Again, note that we are not actually dividing [latex]\infty[/latex] by [latex]\infty[/latex]. Since [latex]\infty[/latex] is not a real number, that is impossible; rather, [latex]\infty / \infty[/latex] is used to represent a quotient of limits, each of which is [latex]\infty[/latex] or [latex]−\infty[/latex].
L’Hôpital’s Rule ([latex]\infty / \infty[/latex] Case)
Suppose [latex]f[/latex] and [latex]g[/latex] are differentiable functions over an open interval containing [latex]a[/latex], except possibly at [latex]a[/latex]. Suppose [latex]\underset{x\to a}{\lim}f(x)=\infty[/latex] (or [latex]−\infty[/latex]) and [latex]\underset{x\to a}{\lim}g(x)=\infty[/latex] (or [latex]−\infty[/latex]). Then,
assuming the limit on the right exists or is [latex]\infty[/latex] or [latex]−\infty[/latex]. This result also holds if the limit is infinite, if [latex]a=\infty[/latex] or [latex]−\infty[/latex], or the limit is one-sided.
Example: Applying L’Hôpital’s Rule ([latex]\infty /\infty[/latex] Case)
Evaluate each of the following limits by applying L’Hôpital’s rule.
- [latex]\underset{x\to \infty }{\lim}\dfrac{3x+5}{2x+1}[/latex]
- [latex]\underset{x\to 0^+}{\lim}\dfrac{\ln x}{\cot x}[/latex]
Try It
Evaluate [latex]\underset{x\to \infty }{\lim}\dfrac{\ln x}{5x}[/latex]
L’Hôpital’s rule is very useful for evaluating limits involving the indeterminate forms [latex]\frac{0}{0}[/latex] and [latex]\frac{\infty}{\infty}[/latex]. However, we can also use L’Hôpital’s rule to help evaluate limits involving other indeterminate forms that arise when evaluating limits. The expressions [latex]0 \cdot \infty[/latex], [latex]\infty - \infty[/latex], [latex]1^{\infty}[/latex], [latex]\infty^0[/latex], and [latex]0^0[/latex] are all considered indeterminate forms. These expressions are not real numbers. Rather, they represent forms that arise when trying to evaluate certain limits. Next we realize why these are indeterminate forms and then understand how to use L’Hôpital’s rule in these cases. The key idea is that we must rewrite the indeterminate forms in such a way that we arrive at the indeterminate form [latex]\frac{0}{0}[/latex] or [latex]\frac{\infty}{\infty}[/latex].
Indeterminate Form of Type [latex]0 \cdot \infty[/latex]
Suppose we want to evaluate [latex]\underset{x\to a}{\lim}(f(x) \cdot g(x))[/latex], where [latex]f(x)\to 0[/latex] and [latex]g(x)\to \infty[/latex] (or [latex]−\infty[/latex]) as [latex]x\to a[/latex]. Since one term in the product is approaching zero but the other term is becoming arbitrarily large (in magnitude), anything can happen to the product. We use the notation [latex]0 \cdot \infty[/latex] to denote the form that arises in this situation. The expression [latex]0 \cdot \infty[/latex] is considered indeterminate because we cannot determine without further analysis the exact behavior of the product [latex]f(x)g(x)[/latex] as [latex]x\to {a}[/latex]. For example, let [latex]n[/latex] be a positive integer and consider
As [latex]x\to \infty[/latex], [latex]f(x)\to 0[/latex] and [latex]g(x)\to \infty[/latex]. However, the limit as [latex]x\to \infty [/latex] of [latex]f(x)g(x)=\frac{3x^2}{(x^n+1)}[/latex] varies, depending on [latex]n[/latex]. If [latex]n=2[/latex], then [latex]\underset{x\to \infty }{\lim}f(x)g(x)=3[/latex]. If [latex]n=1[/latex], then [latex]\underset{x\to \infty }{\lim}f(x)g(x)=\infty[/latex]. If [latex]n=3[/latex], then [latex]\underset{x\to \infty }{\lim}f(x)g(x)=0[/latex]. Here we consider another limit involving the indeterminate form [latex]0 \cdot \infty[/latex] and show how to rewrite the function as a quotient to use L’Hôpital’s rule.
Example: Indeterminate Form of Type [latex]0·\infty [/latex]
Evaluate [latex]\underset{x\to 0^+}{\lim}x \ln x[/latex]
Try It
Evaluate [latex]\underset{x\to 0}{\lim}x \cot x[/latex]
Indeterminate Form of Type [latex]\infty -\infty[/latex]
Another type of indeterminate form is [latex]\infty -\infty[/latex]. Consider the following example. Let [latex]n[/latex] be a positive integer and let [latex]f(x)=3x^n[/latex] and [latex]g(x)=3x^2+5[/latex]. As [latex]x\to \infty[/latex], [latex]f(x)\to \infty [/latex] and [latex]g(x)\to \infty [/latex]. We are interested in [latex]\underset{x\to \infty}{\lim}(f(x)-g(x))[/latex]. Depending on whether [latex]f(x)[/latex] grows faster, [latex]g(x)[/latex] grows faster, or they grow at the same rate, as we see next, anything can happen in this limit. Since [latex]f(x)\to \infty [/latex] and [latex]g(x)\to \infty[/latex], we write [latex]\infty -\infty [/latex] to denote the form of this limit. As with our other indeterminate forms, [latex]\infty -\infty [/latex] has no meaning on its own and we must do more analysis to determine the value of the limit. For example, suppose the exponent [latex]n[/latex] in the function [latex]f(x)=3x^n[/latex] is [latex]n=3[/latex], then
On the other hand, if [latex]n=2[/latex], then
However, if [latex]n=1[/latex], then
Therefore, the limit cannot be determined by considering only [latex]\infty -\infty[/latex]. Next we see how to rewrite an expression involving the indeterminate form [latex]\infty -\infty [/latex] as a fraction to apply L’Hôpital’s rule.
Example: Indeterminate Form of Type [latex]\infty -\infty[/latex]
Evaluate [latex]\underset{x\to 0^+}{\lim}\left(\dfrac{1}{x^2}-\dfrac{1}{\tan x}\right)[/latex].
Try It
Evaluate [latex]\underset{x\to 0^+}{\lim}\left(\dfrac{1}{x}-\dfrac{1}{\sin x}\right)[/latex].
Other Types of Indeterminate Form
Another type of indeterminate form that arises when evaluating limits involves exponents. The expressions [latex]0^0[/latex], [latex]\infty^0[/latex], and [latex]1^{\infty}[/latex] are all indeterminate forms. On their own, these expressions are meaningless because we cannot actually evaluate these expressions as we would evaluate an expression involving real numbers. Rather, these expressions represent forms that arise when finding limits. Now we examine how L’Hôpital’s rule can be used to evaluate limits involving these indeterminate forms.
Since L’Hôpital’s rule applies to quotients, we use the natural logarithm function and its properties to reduce a problem evaluating a limit involving exponents to a related problem involving a limit of a quotient. For example, suppose we want to evaluate [latex]\underset{x\to a}{\lim}f(x)^{g(x)}[/latex] and we arrive at the indeterminate form [latex]\infty^0[/latex]. (The indeterminate forms [latex]0^0[/latex] and [latex]1^{\infty}[/latex] can be handled similarly.)
Example: Indeterminate Form of Type [latex]\infty^0[/latex]
Evaluate [latex]\underset{x\to \infty }{\lim} x^{\frac{1}{x}}[/latex]
Try It
Evaluate [latex]\underset{x\to \infty}{\lim} x^{\frac{1}{\ln x}}[/latex]
Example: Indeterminate Form of Type [latex]0^0[/latex]
Evaluate [latex]\underset{x\to 0^+}{\lim} x^{\sin x}[/latex]
Try It
Evaluate [latex]\underset{x\to 0^+}{\lim} x^x[/latex]