Essential Concepts
- Finding the mass, center of mass, moments, and moments of inertia in double integrals:
- For a lamina R with a density function ρ(x,y) at any point (x,y) in the plane, the mass is m=∬Rρ(x,y)dA
- The moments about the x-axis and y-axis are Mx=∬Ryρ(x,y)dA and My=∬Rxρ(x,y)dA
- The center of mass is given by ¯x=Mym, ¯y=Mxm
- The center of mass becomes the centroid of the plane when the density is constant.
- The moments of inertia about the x-axis, y-axis, and the origin are Ix=∬Ry2ρ(x,y)dA, Iy=∬Rx2ρ(x,y)dA, and I0=Ix+Iy=∬R(x2+y2)ρ(x,y)dA
- Finding the mass, center of mass, moments, and moments of inertia in triple integrals:
- For a solid object Q with a density function ρ(x,y,z) at any point (x,y,z) in space, the mass is m=∭Qρ(x,y,z)dV
- The moments about the xy-plane, the xz-plane, and the yz-plane are Mxy=∭Qzρ(x,y,z)dV, Mxz=∭Qyρ(x,y,z)dV, Myz=∭Qxρ(x,y,z)dV
- The center of mass is given by ¯x=Myzm, ¯x=Mxzm, ¯x=Mxym
- The center of mass becomes the centroid of the solid when the density is constant.
- The moments of inertia about the yz-plane, the xz-plane, and the xy-plane are Ix=∭Q(y2+z2)ρ(x,y,z)dV, Iy=∭Q(x2+z2)ρ(x,y,z)dV, Iz=∭Q(x2+y2)ρ(x,y,z)dV
Key Equations
- Mass of a lamina
m=lim - Moment about the x-axis
M_{x}=\underset{k,l\to\infty}{\lim}\displaystyle\sum_{i=1}^{k}\displaystyle\sum_{j=1}^{l}(y_{ij}^{\ast})m_{ij}=\underset{k,l\to\infty}{\lim}\displaystyle\sum_{i=1}^{k}\displaystyle\sum_{j=1}^{l}(y_{ij}^{\ast})\rho(x_{ij}^{\ast},y_{ij}^{\ast})\Delta{A}=\underset{R}{\displaystyle\iint} y\rho(x,y) dA - Moment about the y-axis
M_{y}=\underset{k,l\to\infty}{\lim}\displaystyle\sum_{i=1}^{k}\displaystyle\sum_{j=1}^{l}(x_{ij}^{\ast})m_{ij}=\underset{k,l\to\infty}{\lim}\displaystyle\sum_{i=1}^{k}\displaystyle\sum_{j=1}^{l}(x_{ij}^{\ast})\rho(x_{ij}^{\ast},y_{ij}^{\ast})\Delta{A}=\underset{R}{\displaystyle\iint} x\rho(x,y) dA - Center of mass of a lamina
\overline{x}=\frac{M_{y}}{m}=\dfrac{\underset{R}{\displaystyle\iint} x\rho(x,y) dA}{\underset{R}{\displaystyle\iint} \rho(x,y) dA} and \overline{y}=\frac{M_{x}}{m}=\dfrac{\underset{R}{\displaystyle\iint} y\rho(x,y) dA}{\underset{R}{\displaystyle\iint} \rho(x,y) dA}
Glossary
- radius of gyration
- the distance from an object’s center of mass to its axis of rotation
Candela Citations
CC licensed content, Shared previously
- Calculus Volume 3. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-3/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction