Summary of Calculating Centers of Mass and Moments of Inertia

Essential Concepts

  • Finding the mass, center of mass, moments, and moments of inertia in double integrals:
    • For a lamina R with a density function ρ(x,y) at any point (x,y) in the plane, the mass is m=Rρ(x,y)dA
    • The moments about the x-axis and y-axis are Mx=Ryρ(x,y)dA and My=Rxρ(x,y)dA
    • The center of mass is given by ¯x=Mym¯y=Mxm
    • The center of mass becomes the centroid of the plane when the density is constant.
    • The moments of inertia about the x-axis, y-axis, and the origin are Ix=Ry2ρ(x,y)dAIy=Rx2ρ(x,y)dA, and I0=Ix+Iy=R(x2+y2)ρ(x,y)dA
  • Finding the mass, center of mass, moments, and moments of inertia in triple integrals:
    • For a solid object Q with a density function ρ(x,y,z) at any point (x,y,z) in space, the mass is m=Qρ(x,y,z)dV
    • The moments about the xy-plane, the xz-plane, and the yz-plane are Mxy=Qzρ(x,y,z)dVMxz=Qyρ(x,y,z)dVMyz=Qxρ(x,y,z)dV
    • The center of mass is given by ¯x=Myzm¯x=Mxzm¯x=Mxym
    • The center of mass becomes the centroid of the solid when the density is constant.
    • The moments of inertia about the yz-plane, the xz-plane, and the xy-plane are Ix=Q(y2+z2)ρ(x,y,z)dVIy=Q(x2+z2)ρ(x,y,z)dVIz=Q(x2+y2)ρ(x,y,z)dV

Key Equations

  • Mass of a lamina
    m=lim
  • Moment about the x-axis
    M_{x}=\underset{k,l\to\infty}{\lim}\displaystyle\sum_{i=1}^{k}\displaystyle\sum_{j=1}^{l}(y_{ij}^{\ast})m_{ij}=\underset{k,l\to\infty}{\lim}\displaystyle\sum_{i=1}^{k}\displaystyle\sum_{j=1}^{l}(y_{ij}^{\ast})\rho(x_{ij}^{\ast},y_{ij}^{\ast})\Delta{A}=\underset{R}{\displaystyle\iint} y\rho(x,y) dA
  • Moment about the y-axis
    M_{y}=\underset{k,l\to\infty}{\lim}\displaystyle\sum_{i=1}^{k}\displaystyle\sum_{j=1}^{l}(x_{ij}^{\ast})m_{ij}=\underset{k,l\to\infty}{\lim}\displaystyle\sum_{i=1}^{k}\displaystyle\sum_{j=1}^{l}(x_{ij}^{\ast})\rho(x_{ij}^{\ast},y_{ij}^{\ast})\Delta{A}=\underset{R}{\displaystyle\iint} x\rho(x,y) dA
  • Center of mass of a lamina
    \overline{x}=\frac{M_{y}}{m}=\dfrac{\underset{R}{\displaystyle\iint} x\rho(x,y) dA}{\underset{R}{\displaystyle\iint} \rho(x,y) dA} and \overline{y}=\frac{M_{x}}{m}=\dfrac{\underset{R}{\displaystyle\iint} y\rho(x,y) dA}{\underset{R}{\displaystyle\iint} \rho(x,y) dA}

Glossary

radius of gyration
the distance from an object’s center of mass to its axis of rotation