Essential Concepts
- A directional derivative represents a rate of change of a function in any given direction.
- The gradient can be used in a formula to calculate the directional derivative.
- The gradient indicates the direction of greatest change of a function of more than one variable.
Key Equations
- Directional derivative (two dimensions)
[latex]D_{\bf{u}} f(a,b)=\underset{h \to {0}}{\lim} \frac{f(a+h\cos{\theta}, b+h\sin{\theta})-f(a,b)}{h}[/latex] or [latex]D_{\bf{u}} f(x,y)=f_{x}(x,y)\cos{\theta}+f_{y}(x,y)\sin{\theta}[/latex] - Gradient (two dimensions)
[latex]\nabla f(x,y)=f_{x}(x,y){\bf{i}}+f_{y}(x,y){\bf{j}}[/latex] - Gradient (three dimensions)
[latex]\nabla f(x,y,z)=f_{x}(x,y,z){\bf{i}}+f_{y}(x,y,z){\bf{j}}+f_{z}(x,y,z){\bf{k}}[/latex] - Directional derivative (three dimensions)
[latex]\begin{array}{c} D_{\bf{u}} f(x,y,z) &=\nabla f(x,y,z)\cdot{\bf{u}} \hfill \\ \hfill &=f_{x}(x,y,z)\cos{\alpha}+f_{y}(x,y,z)\cos{\beta}+f_{z}(x,y,z)\cos{\gamma}\end{array}[/latex]
Glossary
- directional derivative
- the derivative of a function in the direction of a given unit vector
- gradient
- the gradient of the function [latex]f(x,y)[/latex] is defined to be [latex]\nabla f(x,y)=(\partial{f}{/}\partial{x}){\bf{i}}+(\partial{f}{/}\partial{y}){\bf{j}}[/latex] which can be generalized to a function of any number of independent variables