Summary of Double Integrals in Polar Coordinates

Essential Concepts

  • To apply a double integral to a situation with circular symmetry, it is often convenient to use a double integral in polar coordinates. We can apply these double integrals over a polar rectangular region or a general polar region, using an iterated integral similar to those used with rectangular double integrals.
  • The area dA in polar coordinates becomes rdrdθ.
  • Use x=rcosθ, y=rsinθ, and dA=rdrdθ to convert an integral in rectangular coordinates to an integral in polar coordinates.
  • Use r2=x2+y2 and θ=tan1(yx) to convert an integral in polar coordinates to an integral in rectangular coordinates, if needed.
  • To find the volume in polar coordinates bounded above by a surface z=f(r,θ) over a region on the xy-plane, use a double integral in polar coordinates.

Key Equations

  • Double integral over a polar rectangular region
    Rf(r,θ)dA=limm,nmi=1nj=1f(rij,θij)ΔA=limm,nmi=1nj=1f(rij,θij)rijΔrΔθ
  • Double integral over a general polar region
    Df(r,θ)rdrdθ=θ=βθ=αr=h2(θ)r=h1(θ)f(r,θ)rdrdθ

Glossary

polar rectangle
the region enclosed between the circles r=a and r=b and the angles θ=α and θ=β; it is described as R={(r,θ)|arb,αθβ}