Summary of Maxima and Minima Problems

Essential Concepts

  • A critical point of the function f(x,y) is any point (x0,y0) where either fx(x0,y0)=fy(x0,y0)=0, or at least one of fx(x0,y0) and fy(x0,y0) do not exist.
  • A saddle point is a point (x0,y0) where fx(x0,y0)=fy(x0,y0)=0, but (x0,y0) is neither a maximum nor a minimum at that point.
  • To find extrema of functions of two variables, first find the critical points, then calculate the discriminant and apply the second derivative test.

Key Equations

  • Discriminant
    D=fxx(x0,y0)fyy(x0,y0)(fxy(x0,y0))2

Glossary

critical point of a function of two variables
the point (x0,y0) is called a critical point of f(x,y) if one of the two following conditions holds:

  1. fx(x0,y0)=fy(x0,y0)=0
  2. At least one of fx(x0,y0) and fy(x0,y0) do not exist
discriminant
the discriminant of the function f(x,y) is given by the formula D=fxx(x0,y0)fyy(x0,y0)(fxy(x0,y0))2
saddle point
given the function z=f(x,y) the point (x0,y0,f(x0,y0)) is a saddle point if both fx(x0,y0)=0 and fy(x0,y0)=0, but f does not have a local extremum at (x0,y0)