Summary of Tangent Planes and Linear Approximations

Essential Concepts

  • The analog of a tangent line to a curve is a tangent plane to a surface for functions of two variables.
  • Tangent planes can be used to approximate values of functions near known values.
  • A function is differentiable at a point if it is ”smooth” at that point (i.e., no corners or discontinuities exist at that point).
  • The total differential can be used to approximate the change in a function z=f(x0,y0) at the point (x0,y0) for given values of Δx and Δy.

Key Equations

  • Tangent plane
    z=f(x0,y0)+fx(x0,y0)(xx0)+fy(x0,y0)(yy0)
  • Linear approximation
    L(x,y)=f(x0,y0)+fx(x0,y0)(xx0)+fy(x0,y0)(yy0)
  • Total differential
    dz=fx(x0,y0)dx+fy(x0,y0)(yy0)dy
  • Differentiability (two variables)
    f(x,y)=f(x0,y0)+fx(x0,y0)(xx0)+fy(x0,y0)(yy0)+E(x,y), where the error term E satisfies lim(x,y)(x0,y0)E(x,y)(xx0)2+(yy0)2=0
  • Differentiability (three variables)
    f(x,y,z)=f(x0,y0,z0)+fx(x0,y0,z0)(xx0)+fy(x0,y0,z0)(yy0)+fz(x0,y0,z0)(zz0)+E(x,y,z), where the error term E satisfies lim(x,y,z)(x0,y0,z0)E(x,y,z)(xx0)2+(yy0)2+(zz0)2=0

Glossary

differentiable
a function f(x,y,z) is differentiable at (x0,y0) if f(x,y) can be expressed in the form f(x,y)=f(x0,y0)+fx(x0,y0)(xx0)+fy(x0,y0)(yy0)+E(x,y), where the error term E(x,y) satisfies lim(x,y)(x0,y0)E(x,y)(xx0)2+(yy0)2=0
linear approximation
given a function f(x,y) and a tangent plane to the function at a point (x0,y0) we can approximate f(x,y) for points near (x0,y0) using the tangent plane formula
tangent plane
given a function f(x,y) that is differentiable at a point (x0,y0) the equation of the tangent plane to the surface z=f(x,y) is given by z=f(x0,y0)+fx(x0,y0)(xx0)+fy(x0,y0)(yy0)
total differential
the total differential of the function f(x,y) at (x0,y0) is given by the formula dz=fx(x0,y0)dx+fy(x0,y0)dy