Solutions: Systems of Linear Equations in Two Variables

Solutions to Odd-Numbered Exercises

1. No, you can either have zero, one, or infinitely many. Examine graphs.

3. You can solve by substitution (isolating [latex]x[/latex] or [latex]y[/latex] ), graphically, or by addition.

5. Yes

7. Yes

9. [latex]\left(-1,2\right)[/latex]

11. [latex]\left(-3,1\right)[/latex]

13. [latex]\left(-\frac{3}{5},0\right)[/latex]

15. No solutions exist.

17. [latex]\left(\frac{72}{5},\frac{132}{5}\right)[/latex]

19. [latex]\left(6,-6\right)[/latex]

21. [latex]\left(-\frac{1}{2},\frac{1}{10}\right)[/latex]

23. No solutions exist.

25. [latex]\left(-\frac{1}{5},\frac{2}{3}\right)[/latex]

27. [latex]\left(x,\frac{x+3}{2}\right)[/latex]

29. [latex]\left(-4,4\right)[/latex]

31. [latex]\left(\frac{1}{2},\frac{1}{8}\right)[/latex]

33. [latex]\left(\frac{1}{6},0\right)[/latex]

35. [latex]\left(x,2\left(7x - 6\right)\right)[/latex]

37. [latex]\left(-\frac{5}{6},\frac{4}{3}\right)[/latex]

39. Consistent with one solution

41. Consistent with one solution

43. Dependent with infinitely many solutions

45. [latex]\left(-3.08,4.91\right)[/latex]

47. [latex]\left(-1.52,2.29\right)[/latex]

49. [latex]\left(\frac{A+B}{2},\frac{A-B}{2}\right)[/latex]

51. [latex]\left(\frac{-1}{A-B},\frac{A}{A-B}\right)[/latex]

53. [latex]\left(\frac{CE-BF}{BD-AE},\frac{AF-CD}{BD-AE}\right)[/latex]