Solutions to Odd-Numbered Exercises
1. No, you can either have zero, one, or infinitely many. Examine graphs.
3. You can solve by substitution (isolating [latex]x[/latex] or [latex]y[/latex] ), graphically, or by addition.
5. Yes
7. Yes
9. [latex]\left(-1,2\right)[/latex]
11. [latex]\left(-3,1\right)[/latex]
13. [latex]\left(-\frac{3}{5},0\right)[/latex]
15. No solutions exist.
17. [latex]\left(\frac{72}{5},\frac{132}{5}\right)[/latex]
19. [latex]\left(6,-6\right)[/latex]
21. [latex]\left(-\frac{1}{2},\frac{1}{10}\right)[/latex]
23. No solutions exist.
25. [latex]\left(-\frac{1}{5},\frac{2}{3}\right)[/latex]
27. [latex]\left(x,\frac{x+3}{2}\right)[/latex]
29. [latex]\left(-4,4\right)[/latex]
31. [latex]\left(\frac{1}{2},\frac{1}{8}\right)[/latex]
33. [latex]\left(\frac{1}{6},0\right)[/latex]
35. [latex]\left(x,2\left(7x - 6\right)\right)[/latex]
37. [latex]\left(-\frac{5}{6},\frac{4}{3}\right)[/latex]
39. Consistent with one solution
41. Consistent with one solution
43. Dependent with infinitely many solutions
45. [latex]\left(-3.08,4.91\right)[/latex]
47. [latex]\left(-1.52,2.29\right)[/latex]
49. [latex]\left(\frac{A+B}{2},\frac{A-B}{2}\right)[/latex]
51. [latex]\left(\frac{-1}{A-B},\frac{A}{A-B}\right)[/latex]
53. [latex]\left(\frac{CE-BF}{BD-AE},\frac{AF-CD}{BD-AE}\right)[/latex]