Learning Outcomes
- Express roots of negative numbers in terms of ii
- Express imaginary numbers as bibi and complex numbers as a+bia+bi
You really need only one new number to start working with the square roots of negative numbers. That number is the square root of −1,√−1−1,√−1. The real numbers are those that can be shown on a number line—they seem pretty real to us! When something is not real, we often say it is imaginary. We call this new number ii and it is used to represent the square root of −1−1.
i=√−1i=√−1
Because √x⋅√x=x√x⋅√x=x, we can also see that √−1⋅√−1=−1√−1⋅√−1=−1 or i⋅i=−1i⋅i=−1. We also know that i⋅i=i2i⋅i=i2, so we can conclude that i2=−1i2=−1.
i2=−1i2=−1
The number −1−1 allows us to work with roots of all negative numbers, not just √−1√−1. There are two important rules to remember: √−1=i√−1=i, and √ab=√a√b√ab=√a√b. You will use these rules to rewrite the square root of a negative number as the square root of a positive number times √−1√−1. Next you will simplify the square root and rewrite √−1√−1 as ii. Let us try an example.
Example
Simplify. √−4√−4
Example
Simplify. √−18√−18
Example
Simplify. −√−72−√−72
You may have wanted to simplify −√−72−√−72 using different factors. Some may have thought of rewriting this radical as −√−9√8−√−9√8, or −√−4√18−√−4√18, or −√−6√12−√−6√12 for instance. Each of these radicals would have eventually yielded the same answer of −6i√2−6i√2.
In the following video, we show more examples of how to use imaginary numbers to simplify a square root with a negative radicand.
Rewriting the Square Root of a Negative Number
- Find perfect squares within the radical.
- Rewrite the radical using the rule √ab=√a⋅√b√ab=√a⋅√b.
- Rewrite √−1√−1 as ii.
Example: √−18=√9√−2=√9√2√−1=3i√2√−18=√9√−2=√9√2√−1=3i√2
Try It
Complex Numbers
A complex number is the sum of a real number and an imaginary number. A complex number is expressed in standard form when written a+bia+bi where aa is the real part and bibi is the imaginary part. For example, 5+2i5+2i is a complex number. So, too, is 3+4i√33+4i√3.
Imaginary numbers are distinguished from real numbers because a squared imaginary number produces a negative real number. Recall, when a positive real number is squared, the result is a positive real number and when a negative real number is squared, again, the result is a positive real number. Complex numbers are a combination of real and imaginary numbers. You can use the usual operations (addition, subtraction, multiplication, and so on) with imaginary numbers. You will see more of that later.
Complex Number | Real Part | Imaginary Part |
---|---|---|
3+7i3+7i | 33 | 7i7i |
18–32i18–32i | 1818 | −32i−32i |
−35+i√2−35+i√2 | −35−35 | i√2i√2 |
√22−12i√22−12i | √22√22 | −12i−12i |
In a number with a radical as part of b, such as −35+i√2−35+i√2 above, the imaginary ii should be written in front of the radical. Though writing this number as −35+√2i−35+√2i is technically correct, it makes it much more difficult to tell whether ii is inside or outside of the radical. Putting it before the radical, as in −35+i√2−35+i√2, clears up any confusion. Look at these last two examples.
Number | Complex Form: a+bia+bi |
Real Part | Imaginary Part |
---|---|---|---|
1717 | 17+0i17+0i | 1717 | 0i0i |
−3i−3i | 0–3i0–3i | 00 | −3i−3i |
By making b=0b=0, any real number can be expressed as a complex number. The real number [latex]a[/latex] is written as a+0ia+0i in complex form. Similarly, any imaginary number can be expressed as a complex number. By making a=0a=0, any imaginary number bibi can be written as 0+bi0+bi in complex form.
Example
Write 83.683.6 as a complex number.
Try It
Example
Write −3i−3i as a complex number.
In the next video, we show more examples of how to write numbers as complex numbers.
Summary
Square roots of negative numbers can be simplified using √−1=i√−1=i and √ab=√a√b√ab=√a√b. Complex numbers have the form a+bia+bi, where aa and bb are real numbers and ii is the square root of −1−1. All real numbers can be written as complex numbers by setting b=0b=0. Imaginary numbers have the form bibi and can also be written as complex numbers by setting a=0a=0.
Contribute!
Candela Citations
- Write Number in the Form of Complex Numbers. Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. Located at: https://youtu.be/mfoOYdDkuyY. License: CC BY: Attribution
- Simplify Square Roots to Imaginary Numbers. Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. Located at: https://youtu.be/LSp7yNP6Xxc. License: CC BY: Attribution