For the following exercises, determine whether each of the following relations is a function.
1. y = 2x + 8
2. [latex]\left\{\left(2,1\right),\left(3,2\right),\left(-1,1\right),\left(0,-2\right)\right\}[/latex]
For the following exercises, evaluate the function [latex]f\left(x\right)=-3{x}^{2}+2x[/latex] at the given input.
3. [latex]f\left(-2\right)[/latex]
4. [latex]f\left(a\right)[/latex]
5. Show that the function [latex]f\left(x\right)=-2{\left(x - 1\right)}^{2}+3[/latex] is not one-to-one.
6. Write the domain of the function [latex]f\left(x\right)=\sqrt{3-x}[/latex] in interval notation.
7. Given [latex]f\left(x\right)=2{x}^{2}-5x[/latex], find [latex]f\left(a+1\right)-f\left(1\right)[/latex].
8. Graph the function [latex]\begin{cases}f\left(x\right) & =x+1 & \text{ if }-2 < x < 3 \\ \text{ }& =-x & \text{ if }x\ge 3\end{cases}[/latex]
For the following exercises, use the graph of the piecewise-defined function shown below.
9. Find [latex]f\left(2\right)[/latex].
10. Find [latex]f\left(-2\right)[/latex].
For the following exercises, use the values listed below.
x | F(x) |
0 | 1 |
1 | 3 |
2 | 5 |
3 | 7 |
4 | 9 |
5 | 11 |
6 | 13 |
7 | 15 |
8 | 17 |
11. Solve the equation [latex]F\left(x\right)=5[/latex].
12. Find [latex]F\left(6\right)[/latex].
13. Is the function represented by the table one-to-one?
See the next page for the solutions to the odd-numbered problems.