Problem Set: Ratios and Rates

Write a Ratio as a Fraction

In the following exercises, write each ratio as a fraction.

  1. [latex]20[/latex] to [latex]36[/latex]

  2. [latex]20[/latex] to [latex]32[/latex]
  3. [latex]42[/latex] to [latex]48[/latex]

  4. [latex]45[/latex] to [latex]54[/latex]
  5. [latex]49[/latex] to [latex]21[/latex]

  6. [latex]56[/latex] to [latex]16[/latex]
  7. [latex]84[/latex] to [latex]36[/latex]

  8. [latex]6.4[/latex] to [latex]0.8[/latex]
  9. [latex]0.56[/latex] to [latex]2.8[/latex]

  10. [latex]1.26[/latex] to [latex]4.2[/latex]
  11. [latex]1\Large\frac{2}{3}[/latex] to [latex]2\Large\frac{5}{6}[/latex]

  12. [latex]1\Large\frac{3}{4}[/latex] to [latex]2\Large\frac{5}{8}[/latex]
  13. [latex]4\Large\frac{1}{6}[/latex] to [latex]3\Large\frac{1}{3}[/latex]

  14. [latex]5\Large\frac{3}{5}[/latex] to [latex]3\Large\frac{3}{5}[/latex]
  15. [latex]{$18}[/latex] to [latex]{$63}[/latex]

  16. [latex]{$16}[/latex] to [latex]{$72}[/latex]
  17. [latex]{$1.21}[/latex] to [latex]{$0.44}[/latex]

  18. [latex]{$1.38}[/latex] to [latex]{$0.69}[/latex]
  19. [latex]28[/latex] ounces to [latex]84[/latex] ounces

  20. [latex]32[/latex] ounces to [latex]128[/latex] ounces
  21. [latex]12[/latex] feet to [latex]46[/latex] feet

  22. [latex]15[/latex] feet to [latex]57[/latex] feet
  23. [latex]246[/latex] milligrams to [latex]45[/latex] milligrams

  24. [latex]304[/latex] milligrams to [latex]48[/latex] milligrams
  25. total cholesterol of [latex]175[/latex] to HDL cholesterol of [latex]45[/latex]

  26. total cholesterol of [latex]215[/latex] to HDL cholesterol of [latex]55[/latex]
  27. [latex]27[/latex] inches to [latex]1[/latex] foot

  28. [latex]28[/latex] inches to [latex]1[/latex] foot
  29. [latex]28[/latex] to [latex]40[/latex][latex]56[/latex] to [latex]32[/latex]

  30. [latex]3.5[/latex] to [latex]0.5[/latex]
  31. [latex]1.2[/latex] to [latex]1.8[/latex]

  32. [latex]1\Large\frac{3}{4}\normalsize\text{to}1\Large\frac{5}{8}[/latex]
  33. [latex]2\Large\frac{1}{3}\normalsize\text{to}5\Large\frac{1}{4}[/latex]

  34. [latex]64[/latex] ounces to [latex]30[/latex] ounces
  35. [latex]28[/latex] inches to [latex]3[/latex] feet

Write a Rate as a Fraction

In the following exercises, write each rate as a fraction.

  1. [latex]140[/latex] calories per [latex]12[/latex] ounces

  2. [latex]180[/latex] calories per [latex]16[/latex] ounces
  3. [latex]8.2[/latex] pounds per [latex]3[/latex] square inches

  4. [latex]9.5[/latex] pounds per [latex]4[/latex] square inches
  5. [latex]488[/latex] miles in [latex]7[/latex] hours

  6. [latex]527[/latex] miles in [latex]9[/latex] hours
  7. [latex]{$595}[/latex] for [latex]40[/latex] hours

  8. [latex]{$798}[/latex] for [latex]40[/latex] hours
  9. [latex]180[/latex] calories per [latex]8[/latex] ounces
  10. [latex]90[/latex] pounds per [latex]7.5[/latex] square inches

  11. [latex]126[/latex] miles in [latex]4[/latex] hours
  12. [latex]{$612.50}[/latex] for [latex]35[/latex] hours

Find Unit Rates

Exercise 1

In the following exercises, find the unit rate. Round to two decimal places, if necessary.

    1. [latex]140[/latex] calories per [latex]12[/latex] ounces

    2. [latex]180[/latex] calories per [latex]16[/latex] ounces
    3. [latex]8.2[/latex] pounds per [latex]3[/latex] square inches

    4. [latex]9.5[/latex] pounds per [latex]4[/latex] square inches
    5. [latex]488[/latex] miles in [latex]7[/latex] hours

    6. [latex]527[/latex] miles in [latex]9[/latex] hours
    7. [latex]{$595}[/latex] for [latex]40[/latex] hours

    8. [latex]{$798}[/latex] for [latex]40[/latex] hours
    9. [latex]576[/latex] miles on [latex]18[/latex] gallons of gas

    10. [latex]435[/latex] miles on [latex]15[/latex] gallons of gas
    11. [latex]43[/latex] pounds in [latex]16[/latex] weeks

    12. [latex]57[/latex] pounds in [latex]24[/latex] weeks
    13. [latex]46[/latex] beats in [latex]0.5[/latex] minute

    14. [latex]54[/latex] beats in [latex]0.5[/latex] minute
    15. [latex]180[/latex] calories per [latex]8[/latex] ounces
    16. [latex]90[/latex] pounds per [latex]7.5[/latex] square inches

    17. [latex]126[/latex] miles in [latex]4[/latex] hours
    18. [latex]{$612.50}[/latex] for [latex]35[/latex] hours

Exercise 2

    1. The bindery at a printing plant assembles [latex]96,000[/latex] magazines in [latex]12[/latex] hours. How many magazines are assembled in one hour?

    2. The pressroom at a printing plant prints [latex]540,000[/latex] sections in [latex]12[/latex] hours. How many sections are printed per hour?

Find Unit Price

Exercise 1

In the following exercises, find the unit price. Round to the nearest cent.

    1. Soap bars at [latex]8[/latex] for [latex]{$8.69}[/latex]

    2. Soap bars at [latex]4[/latex] for [latex]{$3.39}[/latex]
    3. Women’s sports socks at [latex]6[/latex] pairs for [latex]{$7.99}[/latex]

    4. Men’s dress socks at [latex]3[/latex] pairs for [latex]{$8.49}[/latex]
    5. Snack packs of cookies at [latex]12[/latex] for [latex]{$5.79}[/latex]

    6. Granola bars at [latex]5[/latex] for [latex]{$3.69}[/latex]
    7. CD-RW discs at [latex]25[/latex] for [latex]{$14.99}[/latex]

    8. CDs at [latex]50[/latex] for [latex]{$4.49}[/latex]
    9. t-shirts: [latex]3[/latex] for [latex]{$8.97}[/latex]
    10. Highlighters: [latex]6[/latex] for [latex]{$2.52}[/latex]

    11. An office supply store sells a box of pens for [latex]{$11}[/latex]. The box contains [latex]12[/latex] pens. How much does each pen cost?
    12. Anna bought a pack of [latex]8[/latex] kitchen towels for [latex]{$13.20}[/latex]. How much did each towel cost? Round to the nearest cent if necessary.

Exercise 2

    1. The grocery store has a special on macaroni and cheese. The price is [latex]{$3.87}[/latex] for [latex]3[/latex] boxes. How much does each box cost?

    2. The pet store has a special on cat food. The price is [latex]{$4.32}[/latex] for [latex]12[/latex] cans. How much does each can cost?

Exercise 3

In the following exercises, find each unit price and then identify the better buy. Round to three decimal places.

    1. Mouthwash, [latex]{50.7-ounce}[/latex] size for [latex]{$6.99}[/latex] or [latex]{33.8-ounce}[/latex] size for [latex]{$4.79}[/latex]

    2. Toothpaste, [latex]6[/latex] ounce size for [latex]{$3.19}[/latex] or [latex]7.8-ounce[/latex] size for [latex]{$5.19}[/latex]
    3. Breakfast cereal, [latex]18[/latex] ounces for [latex]{$3.99}[/latex] or [latex]14[/latex] ounces for [latex]{$3.29}[/latex]

    4. Breakfast Cereal, [latex]10.7[/latex] ounces for [latex]{$2.69}[/latex] or [latex]14.8[/latex] ounces for [latex]{$3.69}[/latex]
    5. Ketchup, [latex]{40-ounce}[/latex] regular bottle for [latex]{$2.99}[/latex] or [latex]{64-ounce}[/latex] squeeze bottle for [latex]{$4.39}[/latex]

    6. Mayonnaise [latex]{15-ounce}[/latex] regular bottle for [latex]{$3.49}[/latex] or [latex]{22-ounce}[/latex] squeeze bottle for [latex]{$4.99}[/latex]
    7. Cheese [latex]{$6.49}[/latex] for [latex]1[/latex] lb. block or [latex]{$3.39}[/latex] for [latex]\Large\frac{1}{2}[/latex] lb. block

    8. Candy [latex]{$10.99}[/latex] for a [latex]1[/latex] lb. bag or [latex]{$2.89}[/latex] for [latex]\Large\frac{1}{4}[/latex] lb. of loose candy
    9. Shampoo: [latex]12[/latex] ounces for [latex]{$4.29}[/latex] or [latex]22[/latex] ounces for [latex]{$7.29}?[/latex]
    10. Vitamins: [latex]60[/latex] tablets for [latex]{$6.49}[/latex] or [latex]100[/latex] for [latex]{$11.99}?[/latex]

Translate Phrases to Expressions with Fractions

In the following exercises, translate the English phrase into an algebraic expression.

    1. [latex]793[/latex] miles per [latex]p[/latex] hours

    2. [latex]78[/latex] feet per [latex]r[/latex] seconds
    3. [latex]{$3}[/latex] for [latex]0.5[/latex] lbs.

    4. [latex]j[/latex] beats in [latex]0.5[/latex] minutes
    5. [latex]105[/latex] calories in [latex]x[/latex] ounces

    6. [latex]400[/latex] minutes for [latex]m[/latex] dollars
    7. the ratio of [latex]y[/latex] and [latex]5x[/latex]

    8. the ratio of [latex]12x[/latex] and [latex]y[/latex]
    9. [latex]535[/latex] miles per [latex]h\text{hours}[/latex]
    10. [latex]a[/latex] adults to [latex]45[/latex] children

    11. the ratio of [latex]4y[/latex] and the difference of [latex]x[/latex] and [latex]10[/latex]
    12. the ratio of [latex]19[/latex] and the sum of [latex]3[/latex] and [latex]n[/latex]

Everyday Math

Everyday math

  1. One elementary school in Ohio has [latex]684[/latex] students and [latex]45[/latex] teachers. Write the student-to-teacher ratio as a unit rate.

  2. The average American produces about [latex]1,600[/latex] pounds of paper trash per year (365 days). How many pounds of paper trash does the average American produce each day? (Round to the nearest tenth of a pound.)
  3. A popular fast food burger weighs [latex]7.5[/latex] ounces and contains [latex]540[/latex] calories, [latex]29[/latex] grams of fat, [latex]43[/latex] grams of carbohydrates, and [latex]25[/latex] grams of protein. Find the unit rate of ⓐ calories per ounce ⓑ grams of fat per ounce ⓒ grams of carbohydrates per ounce ⓓ grams of protein per ounce. Round to two decimal places.

  4. A [latex]16-ounce[/latex] chocolate mocha coffee with whipped cream contains [latex]470[/latex] calories, [latex]18[/latex] grams of fat, [latex]63[/latex] grams of carbohydrates, and [latex]15[/latex] grams of protein. Find the unit rate of ⓐ calories per ounce ⓑ grams of fat per ounce ⓒ grams of carbohydrates per ounce ⓓ grams of protein per ounce.

 

Writing Exercises

  1. Would you prefer the ratio of your income to your friend’s income to be [latex]\text{3/1}[/latex] or [latex]1/3?[/latex] Explain your reasoning.
    Answers will vary.
  2. The parking lot at the airport charges [latex]{$0.75}[/latex] for every [latex]15[/latex] minutes. ⓐ How much does it cost to park for [latex]1[/latex] hour? ⓑ Explain how you got your answer to part ⓐ. Was your reasoning based on the unit cost or did you use another method?
  3. Kathryn ate a [latex]4-ounce[/latex] cup of frozen yogurt and then went for a swim. The frozen yogurt had [latex]115[/latex] calories. Swimming burns [latex]422[/latex] calories per hour. For how many minutes should Kathryn swim to burn off the calories in the frozen yogurt? Explain your reasoning.
    Answers will vary.
  4. Mollie had a [latex]16-ounce[/latex] cappuccino at her neighborhood coffee shop. The cappuccino had [latex]110[/latex] calories. If Mollie walks for one hour, she burns [latex]246[/latex] calories. For how many minutes must Mollie walk to burn off the calories in the cappuccino? Explain your reasoning.

Contribute!

Did you have an idea for improving this content? We’d love your input.

Improve this pageLearn More