Problem Set: Solving Systems with Cramer’s Rule

1. Explain why we can always evaluate the determinant of a square matrix.

2. Examining Cramer’s Rule, explain why there is no unique solution to the system when the determinant of your matrix is 0. For simplicity, use a 2×2 matrix.

3. Explain what it means in terms of an inverse for a matrix to have a 0 determinant.

4. The determinant of 2×2 matrix A is 3. If you switch the rows and multiply the first row by 6 and the second row by 2, explain how to find the determinant and provide the answer.

For the following exercises, find the determinant.

5. |1234|

6. |1234|

7. |2516|

8. |8415|

9. |1034|

10. |1020010|

11. |100.250.1|

12. |6384|

13. |233.14,000|

14. |1.10.67.20.5|

15. |100010003|

16. |140023003|

17. |101010100|

18. |231341561|

19. |214428283|

20. |612435191|

21. |511231363|

22. |1.1214004.10.42.5|

23. |21.63.11.1389.302|

24. |1213141516170018|

For the following exercises, solve the system of linear equations using Cramer’s Rule.

25. 2x3y=14x+5y=9

26. 5x4y=24x+7y=6

27.  6x3y=28x+9y=1

28. 2x+6y=125x2y=13

29. 4x+3y=23 2xy=1

30. 10x6y=25x+8y=1

31. 4x3y=32x+6y=4

32. 4x5y=73x+9y=0

33. 4x+10y=1803x5y=105

34.  8x2y=34x+6y=4

For the following exercises, solve the system of linear equations using Cramer’s Rule.

35.  x+2y4z=1 7x+3y+5z=262x6y+7z=6

36. 5x+2y4z=47 4x3yz=94 3x3y+2z=94

37.  4x+5yz=72x9y+2z=8 5y+7z=21

38. 4x3y+4z=105x2z=23x+2y5z=9

39. 4x2y+3z=6 6x+y=22x+7y+8z=24

40. 5x+2yz=17x8y+3z=1.56x12y+z=7

41.  13x17y+16z=7311x+15y+17z=61 46x+10y30z=18

42. 4x3y8z=7 2x9y+5z=0.5 5x6y5z=2

43.  4x6y+8z=102x+3y4z=5 x+y+z=1

44. 4x6y+8z=102x+3y4z=512x+18y24z=30

For the following exercises, use the determinant function on a graphing utility.

45. |1089021010300243|

46. |1021091330210112|

47. |1217401210050022,0000002|

48. |1000230045607890|