1. Explain why we can always evaluate the determinant of a square matrix.
2. Examining Cramer’s Rule, explain why there is no unique solution to the system when the determinant of your matrix is 0. For simplicity, use a 2×2 matrix.
3. Explain what it means in terms of an inverse for a matrix to have a 0 determinant.
4. The determinant of 2×2 matrix A is 3. If you switch the rows and multiply the first row by 6 and the second row by 2, explain how to find the determinant and provide the answer.
For the following exercises, find the determinant.
5. |1234|
6. |−123−4|
7. |2−5−16|
8. |−84−15|
9. |103−4|
10. |10200−10|
11. |100.250.1|
12. |6−384|
13. |−2−33.14,000|
14. |−1.10.67.2−0.5|
15. |−10001000−3|
16. |−14002300−3|
17. |101010100|
18. |2−313−41−561|
19. |−214−42−82−8−3|
20. |6−12−4−3519−1|
21. |51−12313−6−3|
22. |1.12−1−4004.1−0.42.5|
23. |2−1.63.11.13−8−9.302|
24. |−12131415−16170018|
For the following exercises, solve the system of linear equations using Cramer’s Rule.
25. 2x−3y=−14x+5y=9
26. 5x−4y=2−4x+7y=6
27. 6x−3y=2−8x+9y=−1
28. 2x+6y=125x−2y=13
29. 4x+3y=23 2x−y=−1
30. 10x−6y=2−5x+8y=−1
31. 4x−3y=−32x+6y=−4
32. 4x−5y=7−3x+9y=0
33. 4x+10y=180−3x−5y=−105
34. 8x−2y=−3−4x+6y=4
For the following exercises, solve the system of linear equations using Cramer’s Rule.
35. x+2y−4z=−1 7x+3y+5z=26−2x−6y+7z=−6
36. −5x+2y−4z=−47 4x−3y−z=−94 3x−3y+2z=94
37. 4x+5y−z=−7−2x−9y+2z=8 5y+7z=21
38. 4x−3y+4z=105x−2z=−23x+2y−5z=−9
39. 4x−2y+3z=6 −6x+y=−22x+7y+8z=24
40. 5x+2y−z=1−7x−8y+3z=1.56x−12y+z=7
41. 13x−17y+16z=73−11x+15y+17z=61 46x+10y−30z=−18
42. −4x−3y−8z=−7 2x−9y+5z=0.5 5x−6y−5z=−2
43. 4x−6y+8z=10−2x+3y−4z=−5 x+y+z=1
44. 4x−6y+8z=10−2x+3y−4z=−512x+18y−24z=−30
For the following exercises, use the determinant function on a graphing utility.
45. |1089021010300243|
46. |10210−91330−2−1011−2|
47. |1217401210050022,0000002|
48. |1000230045607890|
Candela Citations
CC licensed content, Specific attribution