For the following exercises, find the slope of the line that passes through the two given points.
1. [latex]\left(2,\text{ }4\right)[/latex] and [latex]\left(4,\text{ 10}\right)[/latex]
2. [latex]\left(1,\text{ 5}\right)[/latex] and [latex]\left(4,\text{ 11}\right)[/latex]
3. [latex]\left(-1,\text{4}\right)[/latex] and [latex]\left(5,\text{2}\right)[/latex]
4. [latex]\left(8,-2\right)[/latex] and [latex]\left(4,6\right)[/latex]
5. [latex]\left(6,\text{ }11\right)[/latex] and [latex]\left(-4, 3\right)[/latex]
For the following exercises, find the slope of the lines graphed.
6.
7.
8.
For the following exercises, write an equation for the lines graphed.
9.
10.
11.
12.
13.
14.
For the following exercises, which of the tables could represent a linear function? For each that could be linear, find a linear equation that models the data.
15.
x | 0 | 5 | 10 | 15 |
g(x) | 5 | –10 | –25 | –40 |
16.
x | 0 | 5 | 10 | 15 |
h(x) | 5 | 30 | 105 | 230 |
17.
x | 0 | 5 | 10 | 15 |
f(x) | –5 | 20 | 45 | 70 |
18.
x | 5 | 10 | 20 | 25 |
k(x) | 28 | 13 | 58 | 73 |
19.
x | 0 | 2 | 4 | 6 |
g(x) | 6 | –19 | –44 | –69 |
20.
x | 2 | 4 | 6 | 8 |
f(x) | –4 | 16 | 36 | 56 |
21.
x | 2 | 4 | 6 | 8 |
f(x) | –4 | 16 | 36 | 56 |
22.
x | 0 | 2 | 6 | 8 |
k(x) | 6 | 31 | 106 | 231 |
23. Find the value of x if a linear function goes through the following points and has the following slope: [latex]\left(x,2\right),\left(-4,6\right),m=3[/latex]
24. Find the value of y if a linear function goes through the following points and has the following slope: [latex]\left(10,y\right),\left(25,100\right),m=-5[/latex]
25. Find the equation of the line that passes through the following points: [latex]\left(a,\text{ }b\right)[/latex] and [latex]\left(a,\text{ }b+1\right)[/latex]
26. Find the equation of the line that passes through the following points: [latex]\left(2a,\text{ }b\right)[/latex] and [latex]\left(a,\text{ }b+1\right)[/latex]
27. Find the equation of the line that passes through the following points: [latex]\left(a,\text{ }0\right)[/latex] and [latex]\left(c,\text{ }d\right)[/latex]
For the following exercises, match the given linear equation with its graph.
1. [latex]f\left(x\right)=-2x - 1[/latex]
2. [latex]f\left(x\right)=-x - 1[/latex]
3. [latex]f\left(x\right)=2[/latex]
4. [latex]f\left(x\right)=-\frac{1}{2}x - 1[/latex]
5. [latex]f\left(x\right)=3x+2[/latex]
6. [latex]f\left(x\right)=2+x[/latex]
For the following exercises, sketch a line with the given features.
7. An x-intercept of [latex]\left(-\text{2},\text{ 0}\right)[/latex] and y-intercept of [latex]\left(0,\text{ 4}\right)[/latex]
8. A y-intercept of [latex]\left(0,\text{ 7}\right)[/latex] and slope [latex]-\frac{3}{2}[/latex]
9. A y-intercept of [latex]\left(0,\text{ 3}\right)[/latex] and slope [latex]\frac{2}{5}[/latex]
10. Passing through the points [latex]\left(-\text{6},\text{ -2}\right)[/latex] and [latex]\left(\text{6},\text{ -6}\right)[/latex]
11. Passing through the points [latex]\left(-\text{3},\text{ -4}\right)[/latex] and [latex]\left(\text{3},\text{ 0}\right)[/latex]
For the following exercises, sketch the graph of each equation.
12. [latex]f\left(x\right)=-2x - 1[/latex]
13. [latex]g\left(x\right)=-3x+2[/latex]
14. [latex]h\left(x\right)=\frac{1}{3}x+2[/latex]
15. [latex]k\left(x\right)=\frac{2}{3}x - 3[/latex]
16. [latex]f\left(t\right)=3+2t[/latex]
17. [latex]p\left(t\right)=-2+3t[/latex]
18. [latex]x=3[/latex]
19. [latex]x=-2[/latex]
20. [latex]r\left(x\right)=4[/latex]
21. [latex]q\left(x\right)=3[/latex]
22. [latex]4x=-9y+36[/latex]
23. [latex]\frac{x}{3}-\frac{y}{4}=1[/latex]
24. [latex]3x - 5y=15[/latex]
25. [latex]3x=15[/latex]
26. [latex]3y=12[/latex]
For the following exercises, write the equation of the line shown in the graph.
27.
28.
29.
30.
Candela Citations
- Precalculus. Authored by: Jay Abramson, et al.. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175.. License: CC BY: Attribution. License Terms: Download for free at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175.