1. Describe the unit circle.
2. What do the x- and y-coordinates of the points on the unit circle represent?
3. Discuss the difference between a coterminal angle and a reference angle.
4. Explain how the cosine of an angle in the second quadrant differs from the cosine of its reference angle in the unit circle.
5. Explain how the sine of an angle in the second quadrant differs from the sine of its reference angle in the unit circle.
For the following exercises, use the given sign of the sine and cosine functions to find the quadrant in which the terminal point determined by tt lies.
6. sin(t)<0sin(t)<0 and cos(t)<0cos(t)<0 7. sin(t)>0sin(t)>0 and cos(t)>0cos(t)>0
8. sin(t)>0sin(t)>0 and cos(t)<0cos(t)<0 9. sin(t)<0sin(t)<0 and cos(t)>0cos(t)>0
For the following exercises, find the exact value of each trigonometric function.
10. sinπ2sinπ2
11. sinπ3sinπ3
12. cosπ2cosπ2
13. cosπ3cosπ3
14. sinπ4sinπ4
15. cosπ4cosπ4
16. sinπ6sinπ6
17. sinπsinπ
18. sin3π2sin3π2
19. cosπcosπ
20. cos0cos0
21. cosπ6cosπ6
22. sin0sin0
For the following exercises, state the reference angle for the given angle.
23. 240∘240∘
24. −170∘−170∘
25. 100∘100∘
26. −315∘−315∘
27. 135∘135∘
28. 5π45π4
29. 2π32π3
30. 5π65π6
31. −11π3−11π3
32. −7π4−7π4
33. −π8−π8
For the following exercises, find the reference angle, the quadrant of the terminal side, and the sine and cosine of each angle. If the angle is not one of the angles on the unit circle, use a calculator and round to three decimal places.
34. 225∘225∘
35. 300∘300∘
36. 320∘320∘
37. 135∘135∘
38. 210∘210∘
39. 120∘120∘
40. 250∘250∘
41. 150∘150∘
42. 5π45π4
43. 7π67π6
44. 5π35π3
45. 3π43π4
46. 4π34π3
47. 2π32π3
48. 5π65π6
49. 7π47π4
For the following exercises, find the requested value.
50. If cos(t)=17cos(t)=17 and tt is in the 4th quadrant, find sin(t)sin(t).
51. If cos(t)=29cos(t)=29 and tt is in the 1st quadrant, find sin(t)sin(t).
52. If sin(t)=38sin(t)=38 and tt is in the 2nd quadrant, find cos(t)cos(t).
53. If sin(t)=−14sin(t)=−14 and tt is in the 3rd quadrant, find cos(t)cos(t).
54. Find the coordinates of the point on a circle with radius 15 corresponding to an angle of 220∘220∘.
55. Find the coordinates of the point on a circle with radius 20 corresponding to an angle of 120∘120∘.
56. Find the coordinates of the point on a circle with radius 8 corresponding to an angle of 7π47π4.
57. Find the coordinates of the point on a circle with radius 16 corresponding to an angle of 5π95π9.
58. State the domain of the sine and cosine functions.
59. State the range of the sine and cosine functions.
For the following exercises, use the given point on the unit circle to find the value of the sine and cosine of tt.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
For the following exercises, use a graphing calculator to evaluate.
80. sin5π9sin5π9
81. cos5π9cos5π9
82. sinπ10sinπ10
83. cosπ10cosπ10
84. sin3π4sin3π4
85. cos3π4cos3π4
86. sin98∘sin98∘
87. cos98∘cos98∘
88. cos310∘cos310∘
89. sin310∘sin310∘
90. sin(11π3)cos(−5π6)sin(11π3)cos(−5π6)
91. sin(3π4)cos(5π3)sin(3π4)cos(5π3)
92. sin(−4π3)cos(π2)sin(−4π3)cos(π2)
93. sin(−9π4)cos(−π6)sin(−9π4)cos(−π6)
94. sin(π6)cos(−π3)sin(π6)cos(−π3)
95. sin(7π4)cos(−2π3)sin(7π4)cos(−2π3)
96. cos(5π6)cos(2π3)cos(5π6)cos(2π3)
97. cos(−π3)cos(π4)cos(−π3)cos(π4)
98. sin(−5π4)sin(11π6)sin(−5π4)sin(11π6)
99. sin(π)sin(π6)sin(π)sin(π6)
For the following exercises, use this scenario: A child enters a carousel that takes one minute to revolve once around. The child enters at the point (0,1)(0,1), that is, on the due north position. Assume the carousel revolves counter clockwise.
100. What are the coordinates of the child after 45 seconds?
101. What are the coordinates of the child after 90 seconds?
102. What is the coordinates of the child after 125 seconds?
103. When will the child have coordinates (0.707,−0.707)(0.707,−0.707) if the ride lasts 6 minutes? (There are multiple answers.)
104. When will the child have coordinates (−0.866,−0.5)(−0.866,−0.5) if the ride last 6 minutes?
Candela Citations
- Precalculus. Authored by: OpenStax College. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175:1/Preface. License: CC BY: Attribution