Key Equations
Cosine | [latex]\cos t=x[/latex] |
Sine | [latex]\sin t=y[/latex] |
Pythagorean Identity | [latex]{\cos }^{2}t+{\sin }^{2}t=1[/latex] |
Key Concepts
- Finding the function values for the sine and cosine begins with drawing a unit circle, which is centered at the origin and has a radius of 1 unit.
- Using the unit circle, the sine of an angle [latex]t[/latex] equals the y-value of the endpoint on the unit circle of an arc of length [latex]t[/latex] whereas the cosine of an angle [latex]t[/latex] equals the x-value of the endpoint.
- The sine and cosine values are most directly determined when the corresponding point on the unit circle falls on an axis.
- When the sine or cosine is known, we can use the Pythagorean Identity to find the other. The Pythagorean Identity is also useful for determining the sines and cosines of special angles.
- Calculators and graphing software are helpful for finding sines and cosines if the proper procedure for entering information is known.
- The domain of the sine and cosine functions is all real numbers.
- The range of both the sine and cosine functions is [latex]\left[-1,1\right][/latex].
- The sine and cosine of an angle have the same absolute value as the sine and cosine of its reference angle.
- The signs of the sine and cosine are determined from the x– and y-values in the quadrant of the original angle.
- An angle’s reference angle is the size angle, [latex]t[/latex],
formed by the terminal side of the angle [latex]t[/latex] and the horizontal axis. - Reference angles can be used to find the sine and cosine of the original angle.
- Reference angles can also be used to find the coordinates of a point on a circle.
Glossary
- cosine function
- the x-value of the point on a unit circle corresponding to a given angle
- Pythagorean Identity
- a corollary of the Pythagorean Theorem stating that the square of the cosine of a given angle plus the square of the sine of that angle equals 1
- sine function
- the y-value of the point on a unit circle corresponding to a given angle
- unit circle
- a circle with a center at [latex]\left(0,0\right)[/latex]
and radius 1.
Candela Citations
CC licensed content, Specific attribution
- Precalculus. Authored by: OpenStax College. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175:1/Preface. License: CC BY: Attribution