Solutions to Try Its
1. sint=−√22,cost=√22,tant=−1,sect=√2,csct=−√2,cott=−1
2. sinπ3=√32cosπ3=12tanπ3=√3secπ3=2cscπ3=2√33cotπ3=√33
3. sin(−7π4)=√22,cos(−7π4)=√22,tan(−7π4)=1,
sec(−7π4)=√2,csc(−7π4)=√2,cot(−7π4)=1
4. −√3
5. −2
6. sint
7. cost=−817,sint=1517,tant=−158
csct=1715,cott=−815
8. sint=−1,cost=0,tant=Undefinedsect=\hspace{0.17em}Undefined,csct=−1,cott=0
9. sect=√2,csct=√2,tant=1,cott=1
10. ≈−2.414
Solutions to Odd-Numbered Exercises
1. Yes, when the reference angle is π4 and the terminal side of the angle is in quadrants I and III. Thus, at x=π4,5π4, the sine and cosine values are equal.
3. Substitute the sine of the angle in for y in the Pythagorean Theorem x2+y2=1. Solve for x and take the negative solution.
5. The outputs of tangent and cotangent will repeat every π units.
7. 2√33
9. √3
11. √2
13. 1
15. 2
17. √33
19. −2√33
21. √3
23. −√2
25. −1
27. −2
29. −√33
31. 2
33. √33
35. −2
37. −1
39. If sint=−2√23,sect=−3,csct=−3√24,tant=2√2,cott=√24
41. sect=2,csct=2√33,tant=√3,cott=√33
43. −√22
45. 3.1
47. 1.4
49. sint=√22,cost=√22,tant=1,cott=1,sect=√2,csct=√2
51. sint=−√32,cost=−12,tant=√3,cott=√33,sect=−2,csct=−2√33
53. –0.228
55. –2.414
57. 1.414
59. 1.540
61. 1.556
63. sin(t)≈0.79
65. csct≈1.16
67. even
69. even
71. sintcost=tant
73. 13.77 hours, period: 1000π
75. 7.73 inches
Candela Citations
CC licensed content, Specific attribution