Chapter 3 Solutions to Odd-Numbered Problems

Section 3.1 Solutions

1. Linear functions have a constant rate of change. Exponential functions increase based on a percent of the original.

3. An asymptote is a line that the graph of a function approaches, as x either increases or decreases without bound. The horizontal asymptote of an exponential function tells us the limit of the function’s values as the independent variable gets either extremely large or extremely small.

5. exponential; the population decreases by a proportional rate.

7. not exponential; the charge decreases by a constant amount each visit, so the statement represents a linear function.

9. The forest represented by the function B(t)=82(1.029)t.

11. After = 20 years, forest A will have 43 more trees than forest B.

13. Answers will vary. Sample response: For a number of years, the population of forest A will increasingly exceed forest B, but because forest B actually grows at a faster rate, the population will eventually become larger than forest A and will remain that way as long as the population growth models hold. Some factors that might influence the long-term validity of the exponential growth model are drought, an epidemic that culls the population, and other environmental and biological factors.

15. exponential growth; The growth factor, 1.06, is greater than 1.

17. exponential decay; The decay factor, 0.97, is between 0 and 1.

19. f(x)=2000(0.1)x

21. f(x)=(16)35(16)x52.93(0.699)x

23. $10,250

25. $13,268.58

27. P=A(t)(1+rn)nt

29. $4,572.56

31. 4%

33. continuous growth; the growth rate is greater than 0.

35. $104,053.65

37. 6.9% compounded continuously

39. g(x)=4(3)x; y-intercept: (0,4); Domain: all real numbers; Range: all real numbers greater than 0.

41. g(x)=10x+7; y-intercept: (0,6); Domain: all real numbers; Range: all real numbers less than 7.

43. g(x)=2(14)x; y-intercept: (0, 2); Domain: all real numbers; Range: all real numbers greater than 0.

45. y-intercept: (0,2)
Graph of two functions, g(-x)=-2(0.25)^(-x) in blue and g(x)=-2(0.25)^x in orange.

47.
Graph of three functions, g(x)=3(2)^(x) in blue, h(x)=3(4)^(x) in green, and f(x)=3(1/4)^(x) in orange.

49. B

51. A

53. E

55. D

57. C

59.
Graph of two functions, f(x)=(1/2)(4)^(x) in blue and -f(x)=(-1/2)(4)^x in orange.

61.
Graph of two functions, -f(x)=(4)(2)^(x)-2 in blue and f(x)=(-4)(2)^x+1 in orange.

63. Horizontal asymptote: h(x)=3; Domain: all real numbers; Range: all real numbers strictly greater than 3.
Graph of h(x)=2^(x)+3.

65. As x , f(x);
As x , f(x)1

67. As x , f(x)2;
As x , f(x)

69. f(x)=4x3

71. f(x)=4x5

73. f(x)=4x

75. y=2x+3

77. y=2(3)x+7

79. g(6)=800+13800.3333

81. h(7)=58

83. x2.953

85. x0.222

87. Let f be the exponential decay function f(x)=a(1b)x such that b>1. Then for some number n>0, f(x)=a(1b)x=a(b1)x=a((en)1)x=a(en)x=a(e)nx.

89. 47,622 foxes

91. $82,247.78; $449.75

93. The graph of G(x)=(1b)x is the reflection about the y-axis of the graph of F(x)=bx; For any real number b>0 and function f(x)=bx, the graph of (1b)x is the the reflection about the y-axis, F(x).

95. The graphs of g(x) and h(x) are the same and are a horizontal shift to the right of the graph of f(x); For any real number n, real number b>0, and function f(x)=bx, the graph of (1bn)bx is the horizontal shift f(xn).

Section 3.2 Solutions

1. A logarithm is an exponent. Specifically, it is the exponent to which a base b is raised to produce a given value. In the expressions given, the base b has the same value. The exponent, y, in the expression by can also be written as the logarithm, logbx, and the value of x is the result of raising b to the power of y.

3. Since the equation of a logarithm is equivalent to an exponential equation, the logarithm can be converted to the exponential equation by=x\\, and then properties of exponents can be applied to solve for x.

5. The natural logarithm is a special case of the logarithm with base b in that the natural log always has base e. Rather than notating the natural logarithm as loge(x), the notation used is ln(x).

7. Since the functions are inverses, their graphs are mirror images about the line = x. So for every point (a,b) on the graph of a logarithmic function, there is a corresponding point (b,a) on the graph of its inverse exponential function.

9. No. A horizontal asymptote would suggest a limit on the range, and the range of any logarithmic function in general form is all real numbers.

11. ac=b

13. xy=64

15. 15b=a

17. 13a=142

19. en=w

21. logc(k)=d

23. log19y=x

25. logn(103)=4

27. logy(39100)=x

29. ln(h)=k

31. x=23=18

33. x=33=27

35. x=912=3

37. x=63=1216

39. x=e2

41. 32

43. 1.06

45. 14.125

47. 12

49. 4

51. –3

53. –12

55. 0

57. 10

59. 2.708

61. 0.151

63. Domain: (,12); Range: (,)

65. Domain: (174,); Range: (,)

67. Domain: (5,); Vertical asymptote: = 5

69. Domain: (13,); Vertical asymptote: x=13

71. Domain: (3,); Vertical asymptote: = –3

73. Domain: (37,); Vertical asymptote: x=37 ; End behavior: as x(37)+,f(x) and as x,f(x)

75. Domain: (3,) ; Vertical asymptote: = –3; End behavior: as x3+f(x) and as xf(x)

77. Domain: (1,); Range: (,); Vertical asymptote: = 1; x-intercept: (54,0); y-intercept: DNE

79. Domain: (,0); Range: (,); Vertical asymptote: = 0; x-intercept: (e2,0); y-intercept: DNE

81. Domain: (0,); Range: (,); Vertical asymptote: = 0; x-intercept: (e3,0); y-intercept: DNE

83. B

85. C

87. B

89. C

91.
Graph of two functions, g(x) = log_(1/2)(x) in orange and f(x)=log(x) in blue.

93.
Graph of two functions, g(x) = ln(1/2)(x) in orange and f(x)=e^(x) in blue.

95. C

97.
Graph of f(x)=log_2(x+2).

99.
Graph of f(x)=ln(-x).

101.
Graph of g(x)=log(6-3x)+1.

103. f(x)=log2((x1))

105. f(x)=3log4(x+2)

107. The graphs of f(x)=log12(x) and g(x)=log2(x) appear to be the same; Conjecture: for any positive base b1, logb(x)=log1b(x).

109. Recall that the argument of a logarithmic function must be positive, so we determine where x+2x4>0 . From the graph of the function f(x)=x+2x4, note that the graph lies above the x-axis on the interval (,2) and again to the right of the vertical asymptote, that is (4,). Therefore, the domain is (,2)(4,).

111. No, the function has no defined value for = 0. To verify, suppose = 0 is in the domain of the function f(x)=log(x). Then there is some number n such that n=log(0). Rewriting as an exponential equation gives: 10n=0, which is impossible since no such real number n exists. Therefore, = 0 is not the domain of the function f(x)=log(x).

113. Yes. Suppose there exists a real number x such that lnx=2. Rewriting as an exponential equation gives x=e2, which is a real number. To verify, let x=e2. Then, by definition, ln(x)=ln(e2)=2.

115. No; ln(1)=0, so ln(e1.725)ln(1) is undefined.

117. 2

Section 3.3 Solutions

1. Any root expression can be rewritten as an expression with a rational exponent so that the power rule can be applied, making the logarithm easier to calculate. Thus, logb(x1n)=1nlogb(x).

3. logb(2)+logb(7)+logb(x)+logb(y)

5. logb(13)logb(17)

7. kln(4)

9. ln(7xy)

11. logb(4)

13. logb(7)

15. 15log(x)+13log(y)19log(z)

17. 32log(x)2log(y)

19. 83log(x)+143log(y)

21. ln(2x7)

23. log(xz3y)

25. log7(15)=ln(15)ln(7)

27. log11(5)=log5(5)log5(11)=1b

29. log11(611)=log5(611)log5(11)=log5(6)log5(11)log5(11)=abb=ab1

31. 3

33. 2.81359

35. 0.93913

37. –2.23266

39. = 4; By the quotient rule: log6(x+2)log6(x3)=log6(x+2x3)=1.

Rewriting as an exponential equation and solving for x:

{61=x+2x30=x+2x360=x+2x36(x3)(x3)0=x+26x+18x30=x4x3 x=4

Checking, we find that log6(4+2)log6(43)=log6(6)log6(1) is defined, so = 4.

41. Let b and n be positive integers greater than 1. Then, by the change-of-base formula, logb(n)=logn(n)logn(b)=1logn(b).

Section 3.4 Solutions

1. Determine first if the equation can be rewritten so that each side uses the same base. If so, the exponents can be set equal to each other. If the equation cannot be rewritten so that each side uses the same base, then apply the logarithm to each side and use properties of logarithms to solve.

3. The one-to-one property can be used if both sides of the equation can be rewritten as a single logarithm with the same base. If so, the arguments can be set equal to each other, and the resulting equation can be solved algebraically. The one-to-one property cannot be used when each side of the equation cannot be rewritten as a single logarithm with the same base.

5. x=13

7. = –1

9. b=65

11. = 10

13. No solution

15. p=log(178)7

17. k=ln(38)3

19. x=ln(383)89

21. x=ln12

23. x=ln(35)38

25. no solution

27. x=ln(3)

29. 102=1100

31. = 49

33. k=136

35. x=9e8

37. x = 2

39. x = -3

41. x = 4

43. x = 112

45. x = 12

47. = 1

49. No solution

51. No solution

53. x=±103

55. = 10

57. = 0

59. x=34

61. = 9
Graph of log_9(x)-5=y and y=-4.

63. x=e232.5
Graph of ln(3x)=y and y=2.

65. = –5
Graph of log(4)+log(-5x)=y and y=2.

67. x=e+1043.2
Graph of ln(4x-10)-6=y and y=-5.

69. No solution
Graph of log_11(-2x^2-7x)=y and y=log_11(x-2).

71. x=1152.2
Graph of log_9(3-x)=y and y=log_9(4x-8).

73. x=101119.2

75. about $27,710.24

77. about 5 years

79. ln(17)50.567

81. x=log(38)+5log(3) 4log(3)2.078

83. x2.2401

85. x44655.7143

87. about 5.83

89. t=ln((yA)1k)

91. t=ln((TTsT0Ts)1k)

Section 3.5 Solutions

1. Half-life is a measure of decay and is thus associated with exponential decay models. The half-life of a substance or quantity is the amount of time it takes for half of the initial amount of that substance or quantity to decay.

3. Doubling time is a measure of growth and is thus associated with exponential growth models. The doubling time of a substance or quantity is the amount of time it takes for the initial amount of that substance or quantity to double in size.

5. a) A=1000e0.5879x b) approximately 10498 flies c) About 5.8 days

7. f(0)16.7; The amount initially present is about 16.7 units.

9. 150

11. exponential; f(x)=1.2x

13.
Graph of P(t)=1000/(1+9e^(-0.6t))

15. about 1.4 years

17. about 7.3 years

19. 4 half-lives; 8.18 minutes

21. { M=23log(SS0)log(SS0)=32M SS0=103M2 S=S0103M2

23. Let y=bx for some non-negative real number b such that b1. Then,
{ln(y)=ln(bx)ln(y)=xln(b)eln(y)=exln(b)y=exln(b)

25. A=125e(0.3567t);A43 mg

27. about 60 days

29. f(t)=250e(0.00914t); half-life: about 76 minutes

31. r0.0667, So the hourly decay rate is about 6.67%

33. f(t)=1350e(0.03466t); after 3 hours: P(180)691,200

35. f(t)=256e(0.068110t); doubling time: about 10 minutes

37. MMS magnitude: 5.82

39. N(3)71

41. C