Section 8.1 Solutions
1. No, you can either have zero, one, or infinitely many. Examine graphs.
3. This means there is no realistic break-even point. By the time the company produces one unit they are already making profit.
5. You can solve by substitution (isolating [latex]x[/latex] or [latex]y[/latex] ), graphically, or by addition.
7. Yes
9. Yes
11. [latex]\left(-1,2\right)[/latex]
13. [latex]\left(-3,1\right)[/latex]
15. [latex]\left(-\frac{3}{5},0\right)[/latex]
17. No solutions exist.
19. [latex]\left(\frac{72}{5},\frac{132}{5}\right)[/latex]
21. [latex]\left(6,-6\right)[/latex]
23. [latex]\left(-\frac{1}{2},\frac{1}{10}\right)[/latex]
25. No solutions exist.
27. [latex]\left(-\frac{1}{5},\frac{2}{3}\right)[/latex]
29. [latex]\left(x,\frac{x+3}{2}\right)[/latex]
31. [latex]\left(-4,4\right)[/latex]
33. [latex]\left(\frac{1}{2},\frac{1}{8}\right)[/latex]
35. [latex]\left(\frac{1}{6},0\right)[/latex]
37. [latex]\left(x,2\left(7x - 6\right)\right)[/latex]
39. [latex]\left(-\frac{5}{6},\frac{4}{3}\right)[/latex]
41. Consistent with one solution
43. Consistent with one solution
45. Dependent with infinitely many solutions
47. [latex]\left(-3.08,4.91\right)[/latex]
49. [latex]\left(-1.52,2.29\right)[/latex]
51. [latex]\left(\frac{A+B}{2},\frac{A-B}{2}\right)[/latex]
53. [latex]\left(\frac{-1}{A-B},\frac{A}{A-B}\right)[/latex]
55. [latex]\left(\frac{CE-BF}{BD-AE},\frac{AF-CD}{BD-AE}\right)[/latex]
57. They never turn a profit.
59. [latex]\left(1,250,100,000\right)[/latex]
61. The numbers are 7.5 and 20.5.
63. 24,000
65. 790 sophomores, 805 freshman
67. 56 men, 74 women
69. 10 gallons of 10% solution, 15 gallons of 60% solution
71. Swan Peak: $750,000, Riverside: $350,000
73. $12,500 in the first account, $10,500 in the second account.
75. High-tops: 45, Low-tops: 15
77. Infinitely many solutions. We need more information.
Section 8.2 Solutions
1. A nonlinear system could be representative of two circles that overlap and intersect in two locations, hence two solutions. A nonlinear system could be representative of a parabola and a circle, where the vertex of the parabola meets the circle and the branches also intersect the circle, hence three solutions.
3. No. There does not need to be a feasible region. Consider a system that is bounded by two parallel lines. One inequality represents the region above the upper line; the other represents the region below the lower line. In this case, no points in the plane are located in both regions; hence there is no feasible region.
5. Choose any number between each solution and plug into [latex]C\left(x\right)[/latex] and [latex]R\left(x\right)[/latex]. If [latex]C\left(x\right)<R\left(x\right),\text{}[/latex] then there is profit.
7. [latex]\left(0,-3\right),\left(3,0\right)[/latex]
9. [latex]\left(-\frac{3\sqrt{2}}{2},\frac{3\sqrt{2}}{2}\right),\left(\frac{3\sqrt{2}}{2},-\frac{3\sqrt{2}}{2}\right)[/latex]
11. [latex]\left(-3,0\right),\left(3,0\right)[/latex]
13. [latex]\left(\frac{1}{4},-\frac{\sqrt{62}}{8}\right),\left(\frac{1}{4},\frac{\sqrt{62}}{8}\right)[/latex]
15. [latex]\left(-\frac{\sqrt{398}}{4},\frac{199}{4}\right),\left(\frac{\sqrt{398}}{4},\frac{199}{4}\right)[/latex]
17. [latex]\left(0,2\right),\left(1,3\right)[/latex]
19. [latex]\left(-\sqrt{\frac{1}{2}\left(\sqrt{5}-1\right)},\frac{1}{2}\left(1-\sqrt{5}\right)\right),\left(\sqrt{\frac{1}{2}\left(\sqrt{5}-1\right)},\frac{1}{2}\left(1-\sqrt{5}\right)\right)[/latex]
21. [latex]\left(5,0\right)[/latex]
23. [latex]\left(0,0\right)[/latex]
25. [latex]\left(3,0\right)[/latex]
27. No Solutions Exist
29. No Solutions Exist
31. [latex]\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right),\left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right),\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right),\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)[/latex]
33. [latex]\left(2,0\right)[/latex]
35. [latex]\left(-\sqrt{7},-3\right),\left(-\sqrt{7},3\right),\left(\sqrt{7},-3\right),\left(\sqrt{7},3\right)[/latex]
37. [latex]\left(-\sqrt{\frac{1}{2}\left(\sqrt{73}-5\right)},\frac{1}{2}\left(7-\sqrt{73}\right)\right),\left(\sqrt{\frac{1}{2}\left(\sqrt{73}-5\right)},\frac{1}{2}\left(7-\sqrt{73}\right)\right)[/latex]
39.
41.
43.
45.
47.
49. [latex]\left(-2\sqrt{\frac{70}{383}},-2\sqrt{\frac{35}{29}}\right),\left(-2\sqrt{\frac{70}{383}},2\sqrt{\frac{35}{29}}\right),\left(2\sqrt{\frac{70}{383}},-2\sqrt{\frac{35}{29}}\right),\left(2\sqrt{\frac{70}{383}},2\sqrt{\frac{35}{29}}\right)[/latex]
51. No Solution Exists
53. [latex]x=0,y>0[/latex] and [latex]0<x<1,\sqrt{x}<y<\frac{1}{x}[/latex]
55. 12, 288
57. 2–20 computers
Section 8.3 Solutions
1. No, a quotient of polynomials can only be decomposed if the denominator can be factored. For example, [latex]\frac{1}{{x}^{2}+1}[/latex] cannot be decomposed because the denominator cannot be factored.
3. Graph both sides and ensure they are equal.
5. If we choose [latex]x=-1[/latex], then the B-term disappears, letting us immediately know that [latex]A=3[/latex]. We could alternatively plug in [latex]x=-\frac{5}{3}[/latex], giving us a B-value of [latex]-2[/latex].
7. [latex]\frac{8}{x+3}-\frac{5}{x - 8}[/latex]
9. [latex]\frac{1}{x+5}+\frac{9}{x+2}[/latex]
11. [latex]\frac{3}{5x - 2}+\frac{4}{4x - 1}[/latex]
13. [latex]\frac{5}{2\left(x+3\right)}+\frac{5}{2\left(x - 3\right)}[/latex]
15. [latex]\frac{3}{x+2}+\frac{3}{x - 2}[/latex]
17. [latex]\frac{9}{5\left(x+2\right)}+\frac{11}{5\left(x - 3\right)}[/latex]
19. [latex]\frac{8}{x - 3}-\frac{5}{x - 2}[/latex]
21. [latex]\frac{1}{x - 2}+\frac{2}{{\left(x - 2\right)}^{2}}[/latex]
23. [latex]-\frac{6}{4x+5}+\frac{3}{{\left(4x+5\right)}^{2}}[/latex]
25. [latex]-\frac{1}{x - 7}-\frac{2}{{\left(x - 7\right)}^{2}}[/latex]
27. [latex]\frac{4}{x}-\frac{3}{2\left(x+1\right)}+\frac{7}{2{\left(x+1\right)}^{2}}[/latex]
29. [latex]\frac{4}{x}+\frac{2}{{x}^{2}}-\frac{3}{3x+2}+\frac{7}{2{\left(3x+2\right)}^{2}}[/latex]
31. [latex]\frac{x+1}{{x}^{2}+x+3}+\frac{3}{x+2}[/latex]
33. [latex]\frac{4 - 3x}{{x}^{2}+3x+8}+\frac{1}{x - 1}[/latex]
35. [latex]\frac{2x - 1}{{x}^{2}+6x+1}+\frac{2}{x+3}[/latex]
37. [latex]\frac{1}{{x}^{2}+x+1}+\frac{4}{x - 1}[/latex]
39. [latex]\frac{2}{{x}^{2}-3x+9}+\frac{3}{x+3}[/latex]
41. [latex]-\frac{1}{4{x}^{2}+6x+9}+\frac{1}{2x - 3}[/latex]
43. [latex]\frac{1}{x}+\frac{1}{x+6}-\frac{4x}{{x}^{2}-6x+36}[/latex]
45. [latex]\frac{x+6}{{x}^{2}+1}+\frac{4x+3}{{\left({x}^{2}+1\right)}^{2}}[/latex]
47. [latex]\frac{x+1}{x+2}+\frac{2x+3}{{\left(x+2\right)}^{2}}[/latex]
49. [latex]\frac{1}{{x}^{2}+3x+25}-\frac{3x}{{\left({x}^{2}+3x+25\right)}^{2}}[/latex]
51. [latex]\frac{1}{8x}-\frac{x}{8\left({x}^{2}+4\right)}+\frac{10-x}{2{\left({x}^{2}+4\right)}^{2}}[/latex]
53. [latex]-\frac{16}{x}-\frac{9}{{x}^{2}}+\frac{16}{x - 1}-\frac{7}{{\left(x - 1\right)}^{2}}[/latex]
55. [latex]\frac{1}{x+1}-\frac{2}{{\left(x+1\right)}^{2}}+\frac{5}{{\left(x+1\right)}^{3}}[/latex]
57. [latex]\frac{5}{x - 2}-\frac{3}{10\left(x+2\right)}+\frac{7}{x+8}-\frac{7}{10\left(x - 8\right)}[/latex]
59. [latex]-\frac{5}{4x}-\frac{5}{2\left(x+2\right)}+\frac{11}{2\left(x+4\right)}+\frac{5}{4\left(x+4\right)}[/latex]