## Section 1.7: Rates of Change and Behavior of Graphs

### Learning Outcomes

• Find the average rate of change of a function.
• Find the difference quotient.
• Test an equation for symmetry algebraically
• Determine whether a function is even, odd, or neither from its graph and equation.
• Use a graph to determine where a function is increasing, decreasing, or constant.
• Use a graph to locate local and absolute maxima and local minima.

Gasoline costs have experienced some wild fluctuations over the last several decades. The table below lists the average cost, in dollars, of a gallon of gasoline for the years 2005–2012. The cost of gasoline can be considered as a function of year.

 $y$ 2005 2006 2007 2008 2009 2010 2011 2012 $C\left(y\right)$ 2.31 2.62 2.84 3.3 2.41 2.84 3.58 3.68

If we were interested only in how the gasoline prices changed between 2005 and 2012, we could compute that the cost per gallon had increased from $2.31 to$3.68, an increase of 1.37. While this is interesting, it might be more useful to look at how much the price changed per year. In this section, we will investigate changes such as these. ## Finding the Average Rate of Change of a Function The price change per year is a rate of change because it describes how an output quantity changes relative to the change in the input quantity. We can see that the price of gasoline in the table above did not change by the same amount each year, so the rate of change was not constant. If we use only the beginning and ending data, we would be finding the average rate of change over the specified period of time. To find the average rate of change, we divide the change in the output value by the change in the input value. \begin{align}\text{Average rate of change}&=\frac{\text{Change in output}}{\text{Change in input}} \\[1mm] &=\frac{\Delta y}{\Delta x} \\[1mm] &= \frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}} \\[1mm] &= \frac{f\left({x}_{2}\right)-f\left({x}_{1}\right)}{{x}_{2}-{x}_{1}}\end{align} The Greek letter $\Delta$ (delta) signifies the change in a quantity; we read the ratio as “delta-y over delta-x” or “the change in $y$ divided by the change in $x$.” Occasionally we write $\Delta f$ instead of $\Delta y$, which still represents the change in the function’s output value resulting from a change to its input value. It does not mean we are changing the function into some other function. In our example, the gasoline price increased by1.37 from 2005 to 2012. Over 7 years, the average rate of change was

$\frac{\Delta y}{\Delta x}=\frac{{1.37}}{\text{7 years}}\approx 0.196\text{ dollars per year}$

On average, the price of gas increased by about 19.6¢ each year.

Other examples of rates of change include:

• A population of rats increasing by 40 rats per week
• A car traveling 68 miles per hour (distance traveled changes by 68 miles each hour as time passes)
• A car driving 27 miles per gallon (distance traveled changes by 27 miles for each gallon)
• The current through an electrical circuit increasing by 0.125 amperes for every volt of increased voltage
• The amount of money in a college account decreasing by \$4,000 per quarter

### A General Note: Rate of Change

A rate of change describes how an output quantity changes relative to the change in the input quantity. The units on a rate of change are “output units per input units.”

The average rate of change between two input values is the total change of the function values (output values) divided by the change in the input values.

$\frac{\Delta y}{\Delta x}=\frac{f\left({x}_{2}\right)-f\left({x}_{1}\right)}{{x}_{2}-{x}_{1}}$

### How To: Given the value of a function at different points, calculate the average rate of change of a function for the interval between two values ${x}_{1}$ and ${x}_{2}$.

1. Calculate the difference ${y}_{2}-{y}_{1}=\Delta y$.
2. Calculate the difference ${x}_{2}-{x}_{1}=\Delta x$.
3. Find the ratio $\frac{\Delta y}{\Delta x}$.

### Example 1: Computing an Average Rate of Change

Using the data in the table below, find the average rate of change of the price of gasoline between 2007 and 2009.

 $y$ 2005 2006 2007 2008 2009 2010 2011 2012 $C\left(y\right)$ 2.31 2.62 2.84 3.3 2.41 2.84 3.58 3.68

The following video provides another example of how to find the average rate of change between two points from a table of values.

### Try It

Using the data in the table below, find the average rate of change between 2005 and 2010.

 $y$ 2005 2006 2007 2008 2009 2010 2011 2012 $C\left(y\right)$ 2.31 2.62 2.84 3.3 2.41 2.84 3.58 3.68

### Example 2: Computing Average Rate of Change from a Graph

Given the function $g\left(t\right)$ shown in Figure 1, find the average rate of change on the interval $\left[-1,2\right]$. Figure 1

### Example 3: Computing Average Rate of Change from a Table

After picking up a friend who lives 10 miles away, Anna records her distance from home over time. The values are shown in the table below. Find her average speed over the first 6 hours.

 t (hours) 0 1 2 3 4 5 6 7 D(t) (miles) 10 55 90 153 214 240 282 300

### Example 4: Computing Average Rate of Change for a Function Expressed as a Formula

Compute the average rate of change of $f\left(x\right)={x}^{2}-\frac{1}{x}$ on the interval $\text{[2,}\text{4].}$

The following video provides another example of finding the average rate of change of a function given a formula and an interval.

### Try It

Find the average rate of change of $f\left(x\right)=x - 2\sqrt{x}$ on the interval $\left[1,9\right]$.

### Example 5: Finding the Average Rate of Change of a Force

The electrostatic force $F$, measured in newtons, between two charged particles can be related to the distance between the particles $d$, in centimeters, by the formula $F\left(d\right)=\frac{2}{{d}^{2}}$. Find the average rate of change of force if the distance between the particles is increased from 2 cm to 6 cm.

### Example 6: Finding an Average Rate of Change as an Expression

Find the average rate of change of $g\left(t\right)={t}^{2}+3t+1$ on the interval $\left[0,a\right]$. The answer will be an expression involving $a$.

### Try It

Find the average rate of change of $f\left(x\right)={x}^{2}+2x - 8$. on the interval $\left[5,a\right]$.

## The Difference Quotient

Let’s imagine a point on the curve of function $f$ at x as shown in Figure 2. The coordinates of the point are $\left(x,f\left(x\right)\right)$. Connect this point with a second point on the curve a little to the right of $x$, with an x-value increased by some small real number $h$. The coordinates of this second point are $\left(x+h,f\left(x+h\right)\right)$ for some positive-value $h$. Figure 2. Connecting point $a$ with a point just beyond allows us to measure a slope close to that of a tangent line at x.

We can calculate the slope of the line connecting the two points $\left(x,f\left(x\right)\right)$ and $\left(x+h,f\left(x+h\right)\right)$, called a secant line, by applying the slope formula,

$\text{slope = }\dfrac{\text{change in }y}{\text{change in }x}$

$\text{slope = }\dfrac{\text{change in }y}{\text{change in }x}$

We use the notation ${m}_{\sec }$ to represent the slope of the secant line connecting two points.

\begin{align}{m}_{\sec }&=\dfrac{f\left(x+h\right)-f\left(x\right)}{\left(x+h\right)-\left(x\right)} \\ &=\dfrac{f\left(x+h\right)-f\left(x\right)}{h} \end{align}

The slope ${m}_{\sec }$ equals the difference quotient between two points $\left(x,f\left(x\right)\right)$ and $\left(x+h,f\left(x+h\right)\right)$.

### THE DIFFERENCE QUOTIENT

The difference quotient between two points $\left(x,f\left(x\right)\right)$ and $\left(x+h,f\left(x+h\right)\right)$ on the curve of $f$ is the slope of the line connecting the two points and is given by

$\text{difference quotient}=\dfrac{f\left(x+h\right)-f\left(x\right)}{h}$

### Example 7: Finding the difference quotient (Quadratic function)

Find the difference quotient if $f(x)=2x^{2}-x$.

### Try It

Find the difference quotient if $f\left(x\right)={x}^{2}+2x - 8$.

### Example 8: Finding the difference quotient (rational function)

Find the difference quotient if $f(x)=\dfrac{1}{x}$.

### Try It

Find the difference quotient if $f(x)=-\dfrac{2}{x}$.

## Symmetry

Think of symmetry as a fold line. If a graph can be folded on top of itself and everything overlaps, then it has symmetry. The fold line that allows this to happen is called the line of symmetry.

### Symmetry

Below are the three types of symmetry: ### How To: test for symmetry without graphing

1. x-axis symmetry: Replace y by -y in the original equation. If it simplifies to the original equation it has this symmetry.
2. y-axis symmetry: Replace x by -x in the original equation. If it simplifies to the original equation it has this symmetry.
3. origin symmetry: Replace y by -y and x by -x in the original equation. If it simplifies to the original equation it has this symmetry.

### Example 9: Testing for Symmetry Algebraically

Test the following equation for symmetry: $y^2=3x-4$

### Try It

Test the following equation for symmetry: $y=2x^3-x$.

## Determining Even and Odd Functions

Some functions exhibit symmetry so that reflections result in the original graph. For example, horizontally reflecting the toolkit functions $f\left(x\right)={x}^{2}$ or $f\left(x\right)=|x|$ will result in the original graph. We say that these types of graphs are symmetric about the y-axis. Functions whose graphs are symmetric about the y-axis are called even functions.

If the graphs of $f\left(x\right)={x}^{3}$ or $f\left(x\right)=\frac{1}{x}$ were reflected over both axes, the result would be the original graph. Figure 12. (a) The cubic toolkit function (b) Horizontal reflection of the cubic toolkit function (c) Horizontal and vertical reflections reproduce the original cubic function.

We say that these graphs are symmetric about the origin. A function with a graph that is symmetric about the origin is called an odd function.

We use the expressions, “odd” and “even” because of polynomials. A polynomial function with only odd degree terms (odd powers of x) will be an odd function. A polynomial function with only even degree terms (even powers of x) will be an even function.

Note: A function can be neither even nor odd if it does not exhibit either symmetry. For example, $f\left(x\right)={2}^{x}$ is neither even nor odd. Also, the only function that is both even and odd is the constant function $f\left(x\right)=0$.

### A General Note: Even and Odd Functions

A function is called an even function if for every input $x$

$f\left(x\right)=f\left(-x\right)$

The graph of an even function is symmetric about the $y\text{-}$ axis.

A function is called an odd function if for every input $x$

$f\left(x\right)=-f\left(-x\right)$

The graph of an odd function is symmetric about the origin.

### How To: Given the formula for a function, determine if the function is even, odd, or neither.

1. Determine whether the function satisfies $f\left(x\right)=f\left(-x\right)$. If it does, it is even.
2. Determine whether the function satisfies $f\left(x\right)=-f\left(-x\right)$. If it does, it is odd.
3. If the function does not satisfy either rule, it is neither even nor odd.

### Example 10: Determining whether a Function Is Even, Odd, or Neither

Is the function $f\left(x\right)={x}^{3}+2x$ even, odd, or neither?

### Try It

Is the function $f\left(s\right)={s}^{4}+3{s}^{2}+7$ even, odd, or neither?

As part of exploring how functions change, we can identify intervals over which the function is changing in specific ways. We say that a function is increasing on an interval if the function values increase as the input values increase within that interval. Similarly, a function is decreasing on an interval if the function values decrease as the input values increase over that interval. The average rate of change of an increasing function is positive, and the average rate of change of a decreasing function is negative. Figure 3 shows examples of increasing and decreasing intervals on a function. Figure 3. The function $f\left(x\right)={x}^{3}-12x$ is increasing on $\left(-\infty \text{,}-\text{2}\right){{\cup }^{\text{ }}}^{\text{ }}\left(2,\infty \right)$ and is decreasing on $\left(-2\text{,}2\right)$.

This video further explains how to find where a function is increasing or decreasing.

While some functions are increasing (or decreasing) over their entire domain, many others are not. A value of the input where a function changes from increasing to decreasing (as we go from left to right, that is, as the input variable increases) is called a local maximum. If a function has more than one, we say it has local maxima. Similarly, a value of the input where a function changes from decreasing to increasing as the input variable increases is called a local minimum. The plural form is “local minima.” Together, local maxima and minima are called local extrema, or local extreme values, of the function. (The singular form is “extremum.”) Often, the term local is replaced by the term relative. In this text, we will use the term local.

Clearly, a function is neither increasing nor decreasing on an interval where it is constant. A function is also neither increasing nor decreasing at extrema. Note that we have to speak of local extrema, because any given local extremum as defined here is not necessarily the highest maximum or lowest minimum in the function’s entire domain.

For the function in Figure 4, the local maximum is 16, and it occurs at $x=-2$. The local minimum is $-16$ and it occurs at $x=2$. Figure 4

To locate the local maxima and minima from a graph, we need to observe the graph to determine where the graph attains its highest and lowest points, respectively, within an open interval. Like the summit of a roller coaster, the graph of a function is higher at a local maximum than at nearby points on both sides. The graph will also be lower at a local minimum than at neighboring points. Figure 5 illustrates these ideas for a local maximum. Figure 5. Definition of a local maximum.

These observations lead us to a formal definition of local extrema.

### A General Note: Local Minima and Local Maxima

A function $f$ is an increasing function on an open interval if $f\left(b\right)>f\left(a\right)$ for any two input values $a$ and $b$ in the given interval where $b>a$.

A function $f$ is a decreasing function on an open interval if $f\left(b\right)<f\left(a\right)$ for any two input values $a$ and $b$ in the given interval where $b>a$.

A function $f$ has a local maximum at $x=b$ if there exists an interval $\left(a,c\right)$ with $a<b<c$ such that, for any $x$ in the interval $\left(a,c\right)$, $f\left(x\right)\le f\left(b\right)$. Likewise, $f$ has a local minimum at $x=b$ if there exists an interval $\left(a,c\right)$ with $a<b<c$ such that, for any $x$ in the interval $\left(a,c\right)$, $f\left(x\right)\ge f\left(b\right)$.

### Example 11: Finding Increasing and Decreasing Intervals on a Graph

Given the function $p\left(t\right)$ in the graph below, identify the intervals on which the function appears to be increasing. Figure 6

### Example 12: Finding Local Extrema from a Graph

Graph the function $f\left(x\right)=\frac{2}{x}+\frac{x}{3}$. Then use the graph to estimate the local extrema of the function and to determine the intervals on which the function is increasing.

### Try It

Graph the function $f\left(x\right)={x}^{3}-6{x}^{2}-15x+20$ to estimate the local extrema of the function. Use these to determine the intervals on which the function is increasing and decreasing.

### Example 13: Finding Local Maxima and Minima from a Graph

For the function $f$ whose graph is shown in Figure 9, find all local maxima and minima. Figure 9

# Analyzing the Toolkit Functions for Increasing or Decreasing Intervals

We will now return to our toolkit functions and discuss their graphical behavior in the table below.

Function Increasing/Decreasing Example
Constant Function

$f\left(x\right)={c}$

Neither increasing nor decreasing Identity Function

$f\left(x\right)={x}$

Increasing Quadratic Function

$f\left(x\right)={x}^{2}$

Increasing on $\left(0,\infty\right)$

Decreasing on $\left(-\infty,0\right)$

Minimum at $x=0$ Cubic Function

$f\left(x\right)={x}^{3}$

Increasing Reciprocal

$f\left(x\right)=\frac{1}{x}$

Decreasing $\left(-\infty,0\right)\cup\left(0,\infty\right)$ Reciprocal Squared

$f\left(x\right)=\frac{1}{{x}^{2}}$

Increasing on $\left(-\infty,0\right)$

Decreasing on $\left(0,\infty\right)$ Cube Root

$f\left(x\right)=\sqrt{x}$

Increasing Square Root

$f\left(x\right)=\sqrt{x}$

Increasing on $\left(0,\infty\right)$ Absolute Value

$f\left(x\right)=|x|$

Increasing on $\left(0,\infty\right)$

Decreasing on $\left(-\infty,0\right)$ ## Use A Graph to Locate the Absolute Maximum and Absolute Minimum

There is a difference between locating the highest and lowest points on a graph in a region around an open interval (locally) and locating the highest and lowest points on the graph for the entire domain. The $y\text{-}$ coordinates (output) at the highest and lowest points are called the absolute maximum and absolute minimum, respectively.

To locate absolute maxima and minima from a graph, we need to observe the graph to determine where the graph attains it highest and lowest points on the domain of the function. See Figure 10. Figure 10

Not every function has an absolute maximum or minimum value. The toolkit function $f\left(x\right)={x}^{3}$ is one such function.

### A General Note: Absolute Maxima and Minima

The absolute maximum of $f$ at $x=c$ is $f\left(c\right)$ where $f\left(c\right)\ge f\left(x\right)$ for all $x$ in the domain of $f$.

The absolute minimum of $f$ at $x=d$ is $f\left(d\right)$ where $f\left(d\right)\le f\left(x\right)$ for all $x$ in the domain of $f$.

### Example 14: Finding Absolute Maxima and Minima from a Graph

For the function $f$ shown in Figure 11, find all absolute maxima and minima. Figure 11

## Key Equations

 Average rate of change $\dfrac{\Delta y}{\Delta x}=\dfrac{f\left({x}_{2}\right)-f\left({x}_{1}\right)}{{x}_{2}-{x}_{1}}$ Difference Quotient $\dfrac{f\left(x+h\right)-f\left(x\right)}{h}$

## Key Concepts

• A rate of change relates a change in an output quantity to a change in an input quantity. The average rate of change is determined using only the beginning and ending data.
• Identifying points that mark the interval on a graph can be used to find the average rate of change.
• Comparing pairs of input and output values in a table can also be used to find the average rate of change.
• An average rate of change can also be computed by determining the function values at the endpoints of an interval described by a formula.
• The average rate of change can sometimes be determined as an expression.
• The difference quotient is used to calculate the slope of the secant line between two points on the graph of a function, f.
• A graph can be symmetric about the x-axis, y-axis, origin, or none at all.
• Even functions are symmetric about the $y\text{-}$ axis, whereas odd functions are symmetric about the origin.
• Even functions satisfy the condition $f\left(x\right)=f\left(-x\right)$.
• Odd functions satisfy the condition $f\left(x\right)=-f\left(-x\right)$.
• A function can be odd, even, or neither.
• A function is increasing where its rate of change is positive and decreasing where its rate of change is negative.
• A local maximum is where a function changes from increasing to decreasing and has an output value larger (more positive or less negative) than output values at neighboring input values.
• A local minimum is where the function changes from decreasing to increasing (as the input increases) and has an output value smaller (more negative or less positive) than output values at neighboring input values.
• Minima and maxima are also called extrema.
• We can find local extrema from a graph.
• The highest and lowest points on a graph indicate the maxima and minima.

## Glossary

absolute maximum
the greatest value of a function over an interval
absolute minimum
the lowest value of a function over an interval
average rate of change
the difference in the output values of a function found for two values of the input divided by the difference between the inputs
decreasing function
a function is decreasing in some open interval if $f\left(b\right)<f\left(a\right)$ for any two input values $a$ and $b$ in the given interval where $b>a$
difference quotient
The difference quotient is used to calculate the slope of the secant line between two points on the graph of a function, f
even function
a function whose graph is unchanged by horizontal reflection, $f\left(x\right)=f\left(-x\right)$, and is symmetric about the $y\text{-}$ axis
increasing function
a function is increasing in some open interval if $f\left(b\right)>f\left(a\right)$ for any two input values $a$ and $b$ in the given interval where $b>a$
local extrema
collectively, all of a function’s local maxima and minima
local maximum
a value of the input where a function changes from increasing to decreasing as the input value increases.
local minimum
a value of the input where a function changes from decreasing to increasing as the input value increases.
odd function
a function whose graph is unchanged by combined horizontal and vertical reflection, $f\left(x\right)=-f\left(-x\right)$, and is symmetric about the origin
rate of change
the change of an output quantity relative to the change of the input quantity

## Section 1.7 Homework Exercises

1. Can the average rate of change of a function be constant?

2. If a function $f$ is increasing on $\left(a,b\right)$ and decreasing on $\left(b,c\right)$, then what can be said about the local extremum of $f$ on $\left(a,c\right)?$

3. How are the absolute maximum and minimum similar to and different from the local extrema?

4. How does the graph of the absolute value function compare to the graph of the quadratic function, $y={x}^{2}$, in terms of increasing and decreasing intervals?

5. How is the difference quotient related to slope?

For exercises 6–10, find the average rate of change of each function on the interval specified for real numbers $b$ or $h$.

6. $f\left(x\right)=4{x}^{2}-7$ on $\left[1,\text{ }b\right]$

7. $g\left(x\right)=2{x}^{2}-9$ on $\left[4,\text{ }b\right]$

8. $p\left(x\right)=3x+4$ on $\left[2,\text{ }2+h\right]$

9. $g\left(x\right)=3{x}^{2}-2$ on $\left[x,x+h\right]$

10. $a\left(t\right)=\frac{1}{t+4}$ on $\left[9,9+h\right]$

For exercises 11-15, find the difference quotient for the given function.

11. $f\left(x\right)=4x-2$

12. $f\left(x\right)=2{x}^{2}-3x$

13. $f\left(x\right)=2{x}^{2}-5x+1$

14. $f\left(x\right)=3{x}^{3}$

15. $f\left(x\right)=\frac{1}{x+3}$

For exercises 16–17, consider the graph of $f$. 16. Estimate the average rate of change from $x=1$ to $x=4$.

17. Estimate the average rate of change from $x=2$ to $x=5$.

For the following exercises, test for symmetry.

18. $y=x^2-7$

19. $y=x^2+12$

20. $x=y^2+1$

21. $x=y^2-5$

22. $y^2=x^2+4$

23. $y^2=x^2-7$

24. $x^2+y^3=3$

25. $x^3-y^2=11$

26. $y=2x-3$

For the following exercises, determine whether the function is odd, even, or neither.

27. $f\left(x\right)=3{x}^{4}$

28. $g\left(x\right)=\sqrt{x}$

29. $h\left(x\right)=\frac{1}{x}+3x$

30. $f\left(x\right)={\left(x - 2\right)}^{2}$

31. $h\left(x\right)=2x-{x}^{3}$

32. $f(x)=\dfrac{x^2}{x^4-5}$

33. $f(x)=\dfrac{x^4}{x^2+6}$

34. $g(x)=\dfrac{4}{x^3-2x}$

35. $g(x)=\dfrac{8}{x-4x^3}$

For exercises 18–21, use the graph of each function to estimate the intervals on which the function is increasing or decreasing.

36. 37. 38. 39. For exercises 40–41, consider the graph shown below. 40. Estimate the intervals where the function is increasing or decreasing.

41. Estimate the point(s) at which the graph of $f$ has a local maximum or a local minimum.

For exercises 42–43, consider the graph below. 42. If the complete graph of the function is shown, estimate the intervals where the function is increasing or decreasing.

43. If the complete graph of the function is shown, estimate the absolute maximum and absolute minimum.

44. The table below gives the annual sales (in millions of dollars) of a product from 1998 to 2006. What was the average rate of change of annual sales (a) between 2001 and 2002, and (b) between 2001 and 2004?

 Year Sales (millions of dollars) 1998 201 1999 219 2000 233 2001 243 2002 249 2003 251 2004 249 2005 243 2006 233

45. The table below gives the population of a town (in thousands) from 2000 to 2008. What was the average rate of change of population (a) between 2002 and 2004, and (b) between 2002 and 2006?

 Year Population (thousands) 2000 87 2001 84 2002 83 2003 80 2004 77 2005 76 2006 78 2007 81 2008 85

For the following exercises, find the average rate of change of each function on the interval specified.

46. $f\left(x\right)={x}^{2}$ on $\left[1,\text{ }5\right]$

47. $h\left(x\right)=5 - 2{x}^{2}$ on $\left[-2,\text{4}\right]$

48. $q\left(x\right)={x}^{3}$ on $\left[-4,\text{2}\right]$

49. $g\left(x\right)=3{x}^{3}-1$ on $\left[-3,\text{3}\right]$

50. $y=\frac{1}{x}$ on $\left[1,\text{ 3}\right]$

51. $p\left(t\right)=\frac{\left({t}^{2}-4\right)\left(t+1\right)}{{t}^{2}+3}$ on $\left[-3,\text{1}\right]$

52. $k\left(t\right)=6{t}^{2}+\frac{4}{{t}^{3}}$ on $\left[-1,3\right]$

For the following exercises, use a graphing utility to estimate the local extrema of each function and to estimate the intervals on which the function is increasing and decreasing.

53. $f\left(x\right)={x}^{4}-4{x}^{3}+5$

54. $h\left(x\right)={x}^{5}+5{x}^{4}+10{x}^{3}+10{x}^{2}-1$

55. $g\left(t\right)=t\sqrt{t+3}$

56. $k\left(t\right)=3{t}^{\frac{2}{3}}-t$

57. $m\left(x\right)={x}^{4}+2{x}^{3}-12{x}^{2}-10x+4$

58. $n\left(x\right)={x}^{4}-8{x}^{3}+18{x}^{2}-6x+2$

59. The graph of the function $f$ is shown below. Based on the calculator screenshot, the point $\left(1.333,\text{ }5.185\right)$ is which of the following?
A) a relative (local) maximum of the function
B) the vertex of the function
C) the absolute maximum of the function
D) a zero of the function.

60. Let $f\left(x\right)=\frac{1}{x}$. Find a number $c$ such that the average rate of change of the function $f$ on the interval $\left(1,c\right)$ is $-\frac{1}{4}$.

61. Let $f\left(x\right)=\frac{1}{x}$ . Find the number $b$ such that the average rate of change of $f$ on the interval $\left(2,b\right)$ is $-\frac{1}{10}$.

62. At the start of a trip, the odometer on a car read 21,395. At the end of the trip, 13.5 hours later, the odometer read 22,125. Assume the scale on the odometer is in miles. What is the average speed the car traveled during this trip?

63. A driver of a car stopped at a gas station to fill up his gas tank. He looked at his watch, and the time read exactly 3:40 p.m. At this time, he started pumping gas into the tank. At exactly 3:44, the tank was full and he noticed that he had pumped 10.7 gallons. What is the average rate of flow of the gasoline into the gas tank?

64. Near the surface of the moon, the distance that an object falls is a function of time. It is given by $d\left(t\right)=2.6667{t}^{2}$, where $t$ is in seconds and $d\left(t\right)$ is in feet. If an object is dropped from a certain height, find the average velocity of the object from $t=1$ to $t=2$.

65. The graph below illustrates the decay of a radioactive substance over $t$ days. Use the graph to estimate the average decay rate from $t=5$ to $t=15$.