CR.11: Factoring Trinomials

Learning Outcomes

  • Factor a trinomial with leading coefficient 1.
  • Factor trinomials by grouping.

Factoring a Trinomial with Leading Coefficient 1

Although we should always begin by looking for a GCF, pulling out the GCF is not the only way that polynomial expressions can be factored. The polynomial x2+5x+6 has a GCF of 1, but it can be written as the product of the factors (x+2) and (x+3).

Trinomials of the form x2+bx+c can be factored by finding two numbers with a product of c and a sum of b. The trinomial x2+10x+16, for example, can be factored using the numbers 2 and 8 because the product of these numbers is 16 and their sum is 10. The trinomial can be rewritten as the product of (x+2) and (x+8).

A General Note: Factoring a Trinomial with Leading Coefficient 1

A trinomial of the form x2+bx+c can be written in factored form as (x+p)(x+q) where pq=c and p+q=b.

Q & A

Can every trinomial be factored as a product of binomials?

No. Some polynomials cannot be factored. These polynomials are said to be prime.

How To: Given a trinomial in the form x2+bx+c, factor it

  1. List factors of c.
  2. Find p and q, a pair of factors of c with a sum of b.
  3. Write the factored expression (x+p)(x+q).

Example: Factoring a Trinomial with Leading Coefficient 1

Factor x2+2x15.

Q & A

Does the order of the factors matter?

No. Multiplication is commutative, so the order of the factors does not matter.

Try It

Factor x27x+6.

Factoring by Grouping

Trinomials with leading coefficients other than 1 are slightly more complicated to factor. For these trinomials, we can factor by grouping by dividing the x term into the sum of two terms, factoring each portion of the expression separately, and then factoring out the GCF of the entire expression. The trinomial 2x2+5x+3 can be rewritten as (2x+3)(x+1) using this process. We begin by rewriting the original expression as 2x2+2x+3x+3 and then factor each portion of the expression to obtain 2x(x+1)+3(x+1). We then pull out the GCF of (x+1) to find the factored expression.

A General Note: Factoring by Grouping

To factor a trinomial of the form ax2+bx+c by grouping, we find two numbers with a product of ac and a sum of b. We use these numbers to divide the x term into the sum of two terms and factor each portion of the expression separately then factor out the GCF of the entire expression.

How To: Given a trinomial in the form ax2+bx+c, factor by grouping

  1. List factors of ac.
  2. Find p and q, a pair of factors of ac with a sum of b.
  3. Rewrite the original expression as ax2+px+qx+c.
  4. Pull out the GCF of ax2+px.
  5. Pull out the GCF of qx+c.
  6. Factor out the GCF of the expression.

Example: Factoring a Trinomial by Grouping

Factor 5x2+7x6 by grouping.

Try It

Factor the following.

  1. 2x2+9x+9
  2. 6x2+x1

In the next video we see another example of how to factor a trinomial by grouping.