CR.22: Laws of Exponents (Negative Exponents)

Learning Outcomes

  • Simplify expressions with negative exponents.
  • Simplify exponential expressions.

Using the Negative Rule of Exponents

Another useful result occurs if we relax the condition that [latex]m>n[/latex] in the quotient rule even further. For example, can we simplify [latex]\dfrac{{h}^{3}}{{h}^{5}}[/latex]? When [latex]mnegative rule of exponents to simplify the expression to its reciprocal.

Divide one exponential expression by another with a larger exponent. Use our example, [latex]\dfrac{{h}^{3}}{{h}^{5}}[/latex].

[latex]\begin{align} \frac{{h}^{3}}{{h}^{5}}& = \frac{h\cdot h\cdot h}{h\cdot h\cdot h\cdot h\cdot h} \\ & = \frac{\cancel{h}\cdot \cancel{h}\cdot \cancel{h}}{\cancel{h}\cdot \cancel{h}\cdot \cancel{h}\cdot h\cdot h} \\ & = \frac{1}{h\cdot h} \\ & = \frac{1}{{h}^{2}} \end{align}[/latex]

If we were to simplify the original expression using the quotient rule, we would have

[latex]\begin{align} \frac{{h}^{3}}{{h}^{5}}& = {h}^{3 - 5} \\ & = {h}^{-2} \end{align}[/latex]

Putting the answers together, we have [latex]{h}^{-2}=\dfrac{1}{{h}^{2}}[/latex]. This is true for any nonzero real number, or any variable representing a nonzero real number.

A factor with a negative exponent becomes the same factor with a positive exponent if it is moved across the fraction bar—from numerator to denominator or vice versa.

[latex]{a}^{-n}=\dfrac{1}{{a}^{n}} \text{ and } {a}^{n}=\dfrac{1}{{a}^{-n}}[/latex]

We have shown that the exponential expression [latex]{a}^{n}[/latex] is defined when [latex]n[/latex] is a natural number, 0, or the negative of a natural number. That means that [latex]{a}^{n}[/latex] is defined for any integer [latex]n[/latex]. Also, the product and quotient rules and all of the rules we will look at soon hold for any integer [latex]n[/latex].

A General Note: The Negative Rule of Exponents

For any nonzero real number [latex]a[/latex] and natural number [latex]n[/latex], the negative rule of exponents states that

[latex]{a}^{-n}=\dfrac{1}{{a}^{n}} \text{ and } {a}^{n}=\dfrac{1}{{a}^{-n}}[/latex]

Example: Using the Negative Exponent Rule

Write each of the following quotients with a single base. Do not simplify further. Write answers with positive exponents.

  1. [latex]\dfrac{{\theta }^{3}}{{\theta }^{10}}[/latex]
  2. [latex]\dfrac{{z}^{2}\cdot z}{{z}^{4}}[/latex]
  3. [latex]\dfrac{{\left(-5{t}^{3}\right)}^{4}}{{\left(-5{t}^{3}\right)}^{8}}[/latex]

Try It

Write each of the following quotients with a single base. Do not simplify further. Write answers with positive exponents.

  1. [latex]\dfrac{{\left(-3t\right)}^{2}}{{\left(-3t\right)}^{8}}[/latex]
  2. [latex]\dfrac{{f}^{47}}{{f}^{49}\cdot f}[/latex]
  3. [latex]\dfrac{2{k}^{4}}{5{k}^{7}}[/latex]

Watch this video to see more examples of simplifying expressions with negative exponents.

Example: Using the Product and Quotient Rules

Write each of the following products with a single base. Do not simplify further. Write answers with positive exponents.

  1. [latex]{b}^{2}\cdot {b}^{-8}[/latex]
  2. [latex]{\left(-x\right)}^{5}\cdot {\left(-x\right)}^{-5}[/latex]
  3. [latex]\dfrac{-7z}{{\left(-7z\right)}^{5}}[/latex]

Try It

Write each of the following products with a single base. Do not simplify further. Write answers with positive exponents.

  1. [latex]{t}^{-11}\cdot {t}^{6}[/latex]
  2. [latex]\dfrac{{25}^{12}}{{25}^{13}}[/latex]

Finding the Power of a Product

To simplify the power of a product of two exponential expressions, we can use the power of a product rule of exponents, which breaks up the power of a product of factors into the product of the powers of the factors. For instance, consider [latex]{\left(pq\right)}^{3}[/latex]. We begin by using the associative and commutative properties of multiplication to regroup the factors.

[latex]\begin{align} {\left(pq\right)}^{3}& = \stackrel{3\text{ factors}}{{\left(pq\right)\cdot \left(pq\right)\cdot \left(pq\right)}} \\ & = p\cdot q\cdot p\cdot q\cdot p\cdot q \\ & = \stackrel{3\text{ factors}}{{p\cdot p\cdot p}}\cdot \stackrel{3\text{ factors}}{{q\cdot q\cdot q}} \\ & = {p}^{3}\cdot {q}^{3} \end{align}[/latex]

In other words, [latex]{\left(pq\right)}^{3}={p}^{3}\cdot {q}^{3}[/latex].

A General Note: The Power of a Product Rule of Exponents

For any real numbers [latex]a[/latex] and [latex]b[/latex] and any integer [latex]n[/latex], the power of a product rule of exponents states that

[latex]\large{\left(ab\right)}^{n}={a}^{n}{b}^{n}[/latex]

Example: Using the Power of a Product Rule

Simplify each of the following products as much as possible using the power of a product rule. Write answers with positive exponents.

  1. [latex]{\left(a{b}^{2}\right)}^{3}[/latex]
  2. [latex]{\left(2t\right)}^{15}[/latex]
  3. [latex]{\left(-2{w}^{3}\right)}^{3}[/latex]
  4. [latex]\dfrac{1}{{\left(-7z\right)}^{4}}[/latex]
  5. [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}[/latex]

Try It

Simplify each of the following products as much as possible using the power of a product rule. Write answers with positive exponents.

  1. [latex]{\left({g}^{2}{h}^{3}\right)}^{5}[/latex]
  2. [latex]{\left(5t\right)}^{3}[/latex]
  3. [latex]{\left(-3{y}^{5}\right)}^{3}[/latex]
  4. [latex]\dfrac{1}{{\left({a}^{6}{b}^{7}\right)}^{3}}[/latex]
  5. [latex]{\left({r}^{3}{s}^{-2}\right)}^{4}[/latex]

In the following video we show more examples of how to find hte power of a product.

Finding the Power of a Quotient

To simplify the power of a quotient of two expressions, we can use the power of a quotient rule, which states that the power of a quotient of factors is the quotient of the powers of the factors. For example, let’s look at the following example.

[latex]{\left({e}^{-2}{f}^{2}\right)}^{7}=\dfrac{{f}^{14}}{{e}^{14}}[/latex]

Let’s rewrite the original problem differently and look at the result.

[latex]\begin{align} {\left({e}^{-2}{f}^{2}\right)}^{7}& = {\left(\frac{{f}^{2}}{{e}^{2}}\right)}^{7} \\[1mm] & = \frac{{f}^{14}}{{e}^{14}} \\ \text{ } \end{align}[/latex]

It appears from the last two steps that we can use the power of a product rule as a power of a quotient rule.

[latex]\begin{align} {\left({e}^{-2}{f}^{2}\right)}^{7}& = {\left(\frac{{f}^{2}}{{e}^{2}}\right)}^{7} \\[1mm] & = \frac{{\left({f}^{2}\right)}^{7}}{{\left({e}^{2}\right)}^{7}} \\[1mm] & = \frac{{f}^{2\cdot 7}}{{e}^{2\cdot 7}} \\[1mm] & = \frac{{f}^{14}}{{e}^{14}} \\ \text{ } \end{align}[/latex]

A General Note: The Power of a Quotient Rule of Exponents

For any real numbers [latex]a[/latex] and [latex]b[/latex] and any integer [latex]n[/latex], the power of a quotient rule of exponents states that

[latex]\large{\left(\dfrac{a}{b}\right)}^{n}=\dfrac{{a}^{n}}{{b}^{n}}[/latex]

Example: Using the Power of a Quotient Rule

Simplify each of the following quotients as much as possible using the power of a quotient rule. Write answers with positive exponents.

  1. [latex]{\left(\dfrac{4}{{z}^{11}}\right)}^{3}[/latex]
  2. [latex]{\left(\dfrac{p}{{q}^{3}}\right)}^{6}[/latex]
  3. [latex]{\left(\dfrac{-1}{{t}^{2}}\right)}^{27}[/latex]
  4. [latex]{\left({j}^{3}{k}^{-2}\right)}^{4}[/latex]
  5. [latex]{\left({m}^{-2}{n}^{-2}\right)}^{3}[/latex]

Try It

Simplify each of the following quotients as much as possible using the power of a quotient rule. Write answers with positive exponents.

  1. [latex]{\left(\dfrac{{b}^{5}}{c}\right)}^{3}[/latex]
  2. [latex]{\left(\dfrac{5}{{u}^{8}}\right)}^{4}[/latex]
  3. [latex]{\left(\dfrac{-1}{{w}^{3}}\right)}^{35}[/latex]
  4. [latex]{\left({p}^{-4}{q}^{3}\right)}^{8}[/latex]
  5. [latex]{\left({c}^{-5}{d}^{-3}\right)}^{4}[/latex]

Simplifying Exponential Expressions

Recall that to simplify an expression means to rewrite it by combing terms or exponents; in other words, to write the expression more simply with fewer terms. The rules for exponents may be combined to simplify expressions.

Example: Simplifying Exponential Expressions

Simplify each expression and write the answer with positive exponents only.

  1. [latex]{\left(6{m}^{2}{n}^{-1}\right)}^{3}[/latex]
  2. [latex]{17}^{5}\cdot {17}^{-4}\cdot {17}^{-3}[/latex]
  3. [latex]{\left(\dfrac{{u}^{-1}v}{{v}^{-1}}\right)}^{2}[/latex]
  4. [latex]\left(-2{a}^{3}{b}^{-1}\right)\left(5{a}^{-2}{b}^{2}\right)[/latex]
  5. [latex]{\left({x}^{2}\sqrt{2}\right)}^{4}{\left({x}^{2}\sqrt{2}\right)}^{-4}[/latex]
  6. [latex]\dfrac{{\left(3{w}^{2}\right)}^{5}}{{\left(6{w}^{-2}\right)}^{2}}[/latex]

Try It

Simplify each expression and write the answer with positive exponents only.

  1. [latex]{\left(2u{v}^{-2}\right)}^{-3}[/latex]
  2. [latex]{x}^{8}\cdot {x}^{-12}\cdot x[/latex]
  3. [latex]{\left(\frac{{e}^{2}{f}^{-3}}{{f}^{-1}}\right)}^{2}[/latex]
  4. [latex]\left(9{r}^{-5}{s}^{3}\right)\left(3{r}^{6}{s}^{-4}\right)[/latex]
  5. [latex]{\left(\frac{4}{9}t{w}^{-2}\right)}^{-3}{\left(\frac{4}{9}t{w}^{-2}\right)}^{3}[/latex]
  6. [latex]\dfrac{{\left(2{h}^{2}k\right)}^{4}}{{\left(7{h}^{-1}{k}^{2}\right)}^{2}}[/latex]

In the following video we show more examples of how to find the power of a quotient.