Key Concepts
- Polynomial functions of degree 2 or more are smooth, continuous functions.
- To find the zeros of a polynomial function, if it can be factored, factor the function and set each factor equal to zero.
- Another way to find the x-intercepts of a polynomial function is to graph the function and identify the points where the graph crosses the x-axis.
- The multiplicity of a zero determines how the graph behaves at the x-intercept.
- The graph of a polynomial will cross the x-axis at a zero with odd multiplicity.
- The graph of a polynomial will touch and bounce off the x-axis at a zero with even multiplicity.
- The end behavior of a polynomial function depends on the leading term.
- The graph of a polynomial function changes direction at its turning points.
- A polynomial function of degree n has at most n – 1 turning points.
- To graph polynomial functions, find the zeros and their multiplicities, determine the end behavior, and ensure that the final graph has at most n – 1 turning points.
- Graphing a polynomial function helps to estimate local and global extremas.
- The Intermediate Value Theorem tells us that if [latex]f\left(a\right) \text{and} f\left(b\right)[/latex] have opposite signs, then there exists at least one value c between a and b for which [latex]f\left(c\right)=0[/latex].
Glossary
- global maximum
- highest turning point on a graph; [latex]f\left(a\right)[/latex] where [latex]f\left(a\right)\ge f\left(x\right)[/latex] for all x.
- global minimum
- lowest turning point on a graph; [latex]f\left(a\right)[/latex] where [latex]f\left(a\right)\le f\left(x\right)[/latex] for all x.
- Intermediate Value Theorem
- for two numbers a and b in the domain of f, if [latex]af takes on every value between [latex]f\left(a\right)[/latex] and [latex]f\left(b\right)[/latex]; specifically, when a polynomial function changes from a negative value to a positive value, the function must cross the x-axis
- multiplicity
- the number of times a given factor appears in the factored form of the equation of a polynomial; if a polynomial contains a factor of the form [latex]{\left(x-h\right)}^{p}[/latex], [latex]x=h[/latex] is a zero of multiplicity p.
Candela Citations
CC licensed content, Original
- Revision and Adaptation. Provided by: Lumen Learning. License: CC BY: Attribution
CC licensed content, Shared previously
- College Algebra. Authored by: Abramson, Jay et al.. Provided by: OpenStax. Located at: http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.2. License: CC BY: Attribution. License Terms: Download for free at http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.2