Learning Outcomes
- Describe hypothesis testing in general and in practice
- Differentiate between Type I and Type II Errors
- Conduct and interpret hypothesis tests for a single population mean, population standard deviation known
- Conduct and interpret hypothesis tests for a single population mean, population standard deviation unknown
The actual test begins by considering two hypotheses. They are called the null hypothesis and the alternative hypothesis. These hypotheses contain opposing viewpoints.
H0: The null hypothesis: It is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt.
Ha: The alternative hypothesis: It is a claim about the population that is contradictory to H0 and what we conclude when we reject H0.
Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.
After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are “reject H0” if the sample information favors the alternative hypothesis or “do not reject H0” or “decline to reject H0” or “fail to reject H0” if the sample information is insufficient to reject the null hypothesis.
Mathematical Symbols Used in H0 and Ha:
H0 | Ha |
---|---|
equal (=) | not equal (≠) or greater than (>) or less than (<) |
greater than or equal to (≥) | less than (<) |
less than or equal to (≤) | more than (>) |
Note
H0 always has a symbol with an equal in it. Ha never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.
Example
H0: No more than 30% of the registered voters in Santa Clara County voted in the primary election. p ≤ 30
Ha: More than 30% of the registered voters in Santa Clara County voted in the primary election. p > 30
try it
A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.
Example
We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:
H0: μ = 2.0
Ha: μ ≠ 2.0
try it
We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H0: μ __ 66 Ha:μ __ 66
Example
We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:
H0: μ ≥ 5
Ha: μ < 5
try it
We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.
H0: μ __ 45 Ha:μ __ 45
Example
In an issue of U.S. News and World Report, an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.
H0: p ≤ 0.066
Ha: p > 0.066
try it
On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.
H0: p __ 0.40 Ha: p __ 0.40
When you perform a hypothesis test, there are four possible outcomes depending on the actual truth (or falseness) of the null hypothesis H0 and the decision to reject or not. The outcomes are summarized in the following table:
ACTION | H0 IS ACTUALLY | … |
---|---|---|
True | False | |
Do not reject H0 |
Correct Outcome | Type II error |
Reject H0 |
Type I Error | Correct Outcome |
The four possible outcomes in the table are: The decision is not to reject H0 when H0 is true (correct decision). The decision is to reject H0 when H0 is true (incorrect decision known as a Type I error). The decision is not to reject H0 when, in fact, H0 is false (incorrect decision known as a Type II error). The decision is to reject H0 when H0 is false (correct decision whose probability is called the Power of the Test).
Each of the errors occurs with a particular probability. The Greek letters
α and β represent the probabilities.
α = probability of a Type I error = P(Type I error) = probability of rejecting the null hypothesis when the null hypothesis is true.
β = probability of a Type II error = P(Type II error) = probability of not rejecting the null hypothesis when the null hypothesis is false.
α and β should be as small as possible because they are probabilities of errors. They are rarely zero.
The Power of the Test is 1 –β. Ideally, we want a high power that is as close to one as possible. Increasing the sample size can increase the Power of the Test.
Suppose the null hypothesis, H0, is: Frank’s rock climbing equipment is safe.
- Type I error: Frank thinks that his rock climbing equipment may not be safe when, in fact, it really is safe.
- Type II error: Frank thinks that his rock climbing equipment may be safe when, in fact, it is not safe.
α = probability that Frank thinks his rock climbing equipment may not be safe when, in fact, it really is safe. β = probability that Frank thinks his rock climbing equipment may be safe when, in fact, it is not safe.
Notice that, in this case, the error with the greater consequence is the Type II error. (If Frank thinks his rock climbing equipment is safe, he will go ahead and use it.)
try it
Suppose the null hypothesis, H0, is: the blood cultures contain no traces of pathogen X. State the Type I and Type II errors.
Suppose the null hypothesis, H0, is: The victim of an automobile accident is alive when he arrives at the emergency room of a hospital.
- Type I error: The emergency crew thinks that the victim is dead when, in fact, the victim is alive.
- Type II error: The emergency crew does not know if the victim is alive when, in fact, the victim is dead.
α = probability that the emergency crew thinks the victim is dead when, in fact, he is really alive = P(Type I error). β = probability that the emergency crew does not know if the victim is alive when, in fact, the victim is dead =P(Type II error).
The error with the greater consequence is the Type I error. (If the emergency crew thinks the victim is dead, they will not treat him.)
try it
Suppose the null hypothesis, H0, is: a patient is not sick. Which type of error has the greater consequence, Type I or Type II?
It is a Boy Genetic Labs claim to be able to increase the likelihood that a pregnancy will result in a boy being born. Statisticians want to test the claim. Suppose that the null hypothesis, H0, is: It’s a Boy Genetic Labs has no effect on gender outcome.
- Type I error: This results when a true null hypothesis is rejected. In the context of this scenario, we would state that we believe that It’s a Boy Genetic Labs influences the gender outcome, when in fact it has no effect. The probability of this error occurring is denoted by the Greek letter alpha, α.
- Type II error: This results when we fail to reject a false null hypothesis. In context, we would state that It’s a Boy Genetic Labs does not influence the gender outcome of a pregnancy when, in fact, it does. The probability of this error occurring is denoted by the Greek letter beta, β.
The error of greater consequence would be the Type I error since couples would use the It’s a Boy Genetic Labs product in hopes of increasing the chances of having a boy.
try it
“Red tide” is a bloom of poison-producing algae–a few different species of a class of plankton called dinoflagellates. When the weather and water conditions cause these blooms, shellfish such as clams living in the area develop dangerous levels of a paralysis-inducing toxin. In Massachusetts, the Division of Marine Fisheries (DMF) monitors levels of the toxin in shellfish by regular sampling of shellfish along the coastline. If the mean level of toxin in clams exceeds 800 μg (micrograms) of toxin per kg of clam meat in any area, clam harvesting is banned there until the bloom is over and levels of toxin in clams subside. Describe both a Type I and a Type II error in this context, and state which error has the greater consequence.
A certain experimental drug claims a cure rate of at least 75% for males with prostate cancer. Describe both the Type I and Type II errors in context. Which error is the more serious?
- Type I: A cancer patient believes the cure rate for the drug is less than 75% when it actually is at least 75%.
- Type II: A cancer patient believes the experimental drug has at least a 75% cure rate when it has a cure rate that is less than 75%.
In this scenario, the Type II error contains the more severe consequence. If a patient believes the drug works at least 75% of the time, this most likely will influence the patient’s (and doctor’s) choice about whether to use the drug as a treatment option.
try it
Determine both Type I and Type II errors for the following scenario:
Assume a null hypothesis, H0, that states the percentage of adults with jobs is at least 88%.
Identify the Type I and Type II errors from these four statements.
a) Not to reject the null hypothesis that the percentage of adults who have jobs is at least 88% when that percentage is actually less than 88%
b) Not to reject the null hypothesis that the percentage of adults who have jobs is at least 88% when the percentage is actually at least 88%.
c) Reject the null hypothesis that the percentage of adults who have jobs is at least 88% when the percentage is actually at least 88%.
d) Reject the null hypothesis that the percentage of adults who have jobs is at least 88% when that percentage is actually less than 88%.
Earlier in the course, we discussed sampling distributions. Particular distributions are associated with hypothesis testing. Perform tests of a population mean using a normal distribution or a Student’s t-distribution. (Remember, use a Student’s t-distribution when the population standard deviation is unknown and the distribution of the sample mean is approximately normal.) We perform tests of a population proportion using a normal distribution (usually n is large or the sample size is large).
If you are testing a single population mean, the distribution for the test is for means:
[latex]\displaystyle\overline{{X}}\text{~}{N}{\left(\mu_{{X}}\text{ , }\frac{{\sigma_{{X}}}}{\sqrt{{n}}}\right)}{\quad\text{or}\quad}{t}_{{{d}{f}}}[/latex]
The population parameter is μ. The estimated value (point estimate) for μ is [latex]\displaystyle\overline{{x}}[/latex], the sample mean.
If you are testing a single population proportion, the distribution for the test is for proportions or percentages:
[latex]\displaystyle{P}^{\prime}\text{~}{N}{\left({p}\text{ , }\sqrt{{\frac{{{p}{q}}}{{n}}}}\right)}[/latex]
The population parameter is p. The estimated value (point estimate) for p is p′. [latex]\displaystyle{p}\prime=\frac{{x}}{{n}}[/latex] where x is the number of successes and n is the sample size.
Assumptions
When you perform a hypothesis test of a single population mean μ using a Student’s t-distribution (often called a t-test), there are fundamental assumptions that need to be met in order for the test to work properly. Your data should be a simple random sample that comes from a population that is approximately normally distributed. You use the sample standard deviation to approximate the population standard deviation. (Note that if the sample size is sufficiently large, a t-test will work even if the population is not approximately normally distributed).
When you perform a hypothesis test of a single population mean μ using a normal distribution (often called a z-test), you take a simple random sample from the population. The population you are testing is normally distributed or your sample size is sufficiently large. You know the value of the population standard deviation which, in reality, is rarely known.
When you perform a hypothesis test of a single population proportion p, you take a simple random sample from the population. You must meet the conditions for a binomial distribution which are as follows: there are a certain number n of independent trials, the outcomes of any trial are success or failure, and each trial has the same probability of a success p. The shape of the binomial distribution needs to be similar to the shape of the normal distribution. To ensure this, the quantities np and nq must both be greater than five (np > 5 and nq > 5). Then the binomial distribution of a sample (estimated) proportion can be approximated by the normal distribution with μ = p and [latex]\displaystyle\sigma=\sqrt{{\frac{{{p}{q}}}{{n}}}}[/latex]. Remember that q = 1 – p.
Concept Review
In a hypothesis test, sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we: Evaluate the null hypothesis, typically denoted with H0. The null is not rejected unless the hypothesis test shows otherwise. The null statement must always contain some form of equality (=, ≤ or ≥) Always write the alternative hypothesis, typically denoted with Ha or H1, using less than, greater than, or not equals symbols, i.e., (≠, >, or <). If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis. Never state that a claim is proven true or false. Keep in mind the underlying fact that hypothesis testing is based on probability laws; therefore, we can talk only in terms of non-absolute certainties.
In every hypothesis test, the outcomes are dependent on a correct interpretation of the data. Incorrect calculations or misunderstood summary statistics can yield errors that affect the results. A Type I error occurs when a true null hypothesis is rejected. A Type II error occurs when a false null hypothesis is not rejected.
The probabilities of these errors are denoted by the Greek letters α and β, for a Type I and a Type II error respectively. The power of the test, 1 – β, quantifies the likelihood that a test will yield the correct result of a true alternative hypothesis being accepted. A high power is desirable.
In order for a hypothesis test’s results to be generalized to a population, certain requirements must be satisfied.
When testing for a single population mean:
- A Student’s t-test should be used if the data come from a simple, random sample and the population is approximately normally distributed, or the sample size is large, with an unknown standard deviation.
- The normal test will work if the data come from a simple, random sample and the population is approximately normally distributed, or the sample size is large, with a known standard deviation.
When testing a single population proportion use a normal test for a single population proportion if the data comes from a simple, random sample, fill the requirements for a binomial distribution, and the mean number of success and the mean number of failures satisfy the conditions: np > 5 and nq > n where n is the sample size, p is the probability of a success, and q is the probability of a failure.
Formula Review
H0 and Ha are contradictory.
α = probability of a Type I error = P(Type I error) = probability of rejecting the null hypothesis when the null hypothesis is true.
β = probability of a Type II error = P(Type II error) = probability of not rejecting the null hypothesis when the null hypothesis is false.
If there is no given preconceived α, then use α = 0.05.
Types of Hypothesis Tests
- Single population mean, known population variance (or standard deviation): Normal test.
- Single population mean, unknown population variance (or standard deviation): Student’s t-test.
- Single population proportion: Normal test.
- For a single population mean, we may use a normal distribution with the following mean and standard deviation. Means: [latex]\displaystyle\mu=\mu_{{\overline{{x}}}}{\quad\text{and}\quad}\sigma_{{\overline{{x}}}}=\frac{{\sigma_{{x}}}}{\sqrt{{n}}}[/latex]
- A single population proportion, we may use a normal distribution with the following mean and standard deviation. Proportions: [latex]\displaystyle\mu={p}{\quad\text{and}\quad}\sigma=\sqrt{{\frac{{{p}{q}}}{{n}}}}[/latex].
Candela Citations
- OpenStax, Statistics, Null and Alternative Hypotheses. Provided by: OpenStax. Located at: http://cnx.org/contents/30189442-6998-4686-ac05-ed152b91b9de@17.41:58/Introductory_Statistics. License: CC BY: Attribution
- Introductory Statistics . Authored by: Barbara Illowski, Susan Dean. Provided by: Open Stax. Located at: http://cnx.org/contents/30189442-6998-4686-ac05-ed152b91b9de@17.44. License: CC BY: Attribution. License Terms: Download for free at http://cnx.org/contents/30189442-6998-4686-ac05-ed152b91b9de@17.44
- Simple hypothesis testing | Probability and Statistics | Khan Academy. Authored by: Khan Academy. Located at: https://youtu.be/5D1gV37bKXY. License: All Rights Reserved. License Terms: Standard YouTube License