Eukaryotic Epigenetic Gene Regulation

Learning Outcomes

Explain the process of epigenetic regulation

The human genome encodes over 20,000 genes; each of the 23 pairs of human chromosomes encodes thousands of genes. The DNA in the nucleus is precisely wound, folded, and compacted into chromosomes so that it will fit into the nucleus. It is also organized so that specific segments can be accessed as needed by a specific cell type.

The first level of organization, or packing, is the winding of DNA strands around histone proteins. Histones package and order DNA into structural units called nucleosome complexes, which can control the access of proteins to the DNA regions (Figure 1a). Under the electron microscope, this winding of DNA around histone proteins to form nucleosomes looks like small beads on a string (Figure 1b). These beads (histone proteins) can move along the string (DNA) and change the structure of the molecule.

Part A depicts a nucleosome composed of spherical histone proteins that are fused together. A double-stranded DNA helix wraps around the nucleosome twice. Free DNA extends from either end of the nucleosome. Part B is an electron micrograph of DNA that is associated with nucleosomes. Each nucleosome looks like a bead. The beads are connected together by free DNA. Nine beads strung together is approximately 150 nm across.

Figure 1. DNA is folded around histone proteins to create (a) nucleosome complexes. These nucleosomes control the access of proteins to the underlying DNA. When viewed through an electron microscope (b), the nucleosomes look like beads on a string. (credit “micrograph”: modification of work by Chris Woodcock)

 

If DNA encoding a specific gene is to be transcribed into RNA, the nucleosomes surrounding that region of DNA can slide down the DNA to open that specific chromosomal region and allow for the transcriptional machinery (RNA polymerase) to initiate transcription (Figure 2). Nucleosomes can move to open the chromosome structure to expose a segment of DNA, but do so in a very controlled manner.

Practice Question

Nucleosomes are depicted as wheel-like structures. The nucleosomes are made up of histones, and have DNA wrapped around the outside. Each histone has a tail that juts out from the wheel. When DNA and the histone tails are methylated, the nucleosomes pack tightly together so there is no free DNA. Transcription factors cannot bind, and genes are not expressed. Acetylation of histone tails results in a looser packing of the nucleosomes. Free DNA is exposed between the nucleosomes, and transcription factors are able to bind genes on this exposed DNA.

Figure 2. Nucleosomes can slide along DNA. When nucleosomes are spaced closely together (top), transcription factors cannot bind and gene expression is turned off. When the nucleosomes are spaced far apart (bottom), the DNA is exposed. Transcription factors can bind, allowing gene expression to occur. Modifications to the histones and DNA affect nucleosome spacing.

 

In females, one of the two X chromosomes is inactivated during embryonic development because of epigenetic changes to the chromatin. What impact do you think these changes would have on nucleosome packing?

 

This type of gene regulation is called epigenetic regulation. Epigenetic means “around genetics.” The changes that occur to the histone proteins and DNA do not alter the nucleotide sequence and are not permanent. Instead, these changes are temporary (although they often persist through multiple rounds of cell division) and alter the chromosomal structure (open or closed) as needed. A gene can be turned on or off depending upon the location and modifications to the histone proteins and DNA.

View this video that describes how epigenetic regulation controls gene expression.

In Summary: Eukaryotic Epigenetic Gene Regulation

In eukaryotic cells, the first stage of gene expression control occurs at the epigenetic level. Epigenetic mechanisms control access to the chromosomal region to allow genes to be turned on or off. These mechanisms control how DNA is packed into the nucleus by regulating how tightly the DNA is wound around histone proteins. The addition or removal of chemical modifications (or flags) to histone proteins or DNA signals to the cell to open or close a chromosomal region. Therefore, eukaryotic cells can control whether a gene is expressed by controlling accessibility to transcription factors and the binding of RNA polymerase to initiate transcription.