Learning Outcomes
- Simplify exponential expressions containing negative exponents and exponents of 0 and 1
Define and Use the Zero Exponent Rule
Return to the quotient rule. We worked with expressions for which [latex]a>b[/latex] so that the difference [latex]a-b[/latex] would never be zero or negative.
The Quotient (Division) Rule for Exponents
For any non-zero number x and any integers a and b: [latex]\displaystyle \frac{{{x}^{a}}}{{{x}^{b}}}={{x}^{a-b}}[/latex]
What would happen if [latex]a=b[/latex]? In this case, we would use the zero exponent rule of exponents to simplify the expression to [latex]1[/latex]. To see how this is done, let us begin with an example.
[latex]\frac{t^{8}}{t^{8}}=\frac{\cancel{t^{8}}}{\cancel{t^{8}}}=1[/latex]
If we were to simplify the original expression using the quotient rule, we would have:
If we equate the two answers, the result is [latex]{t}^{0}=1[/latex]. This is true for any nonzero real number, or any variable representing a real number.
The sole exception is the expression [latex]{0}^{0}[/latex]. This appears later in more advanced courses, but for now, we will consider the value to be undefined.
The Zero Exponent Rule of Exponents
For any nonzero real number [latex]a[/latex], the zero exponent rule of exponents states that
Example
Simplify each expression using the zero exponent rule of exponents.
- [latex]\dfrac{{c}^{3}}{{c}^{3}}[/latex]
- [latex]\dfrac{-3{x}^{5}}{{x}^{5}}[/latex]
- [latex]\dfrac{{\left({j}^{2}k\right)}^{4}}{\left({j}^{2}k\right)\cdot {\left({j}^{2}k\right)}^{3}}[/latex]
- [latex]\dfrac{5{\left(r{s}^{2}\right)}^{2}}{{\left(r{s}^{2}\right)}^{2}}[/latex]
In the following video, you will see more examples of simplifying expressions whose exponents may be zero.
Define and Use the Negative Exponent Rule
Another useful result occurs if we relax the condition that [latex]a>b[/latex] in the quotient rule even further. For example, can we simplify [latex]\frac{{h}^{3}}{{h}^{5}}[/latex]? When [latex]anegative rule of exponents to simplify the expression to its reciprocal.
Divide one exponential expression by another with a larger exponent. Use our example, [latex]\frac{{h}^{3}}{{h}^{5}}[/latex].
If we were to simplify the original expression using the quotient rule, we would have
Putting the answers together, we have [latex]{h}^{-2}=\frac{1}{{h}^{2}}[/latex]. This is true for any nonzero real number, or any variable representing a nonzero real number.
A factor with a negative exponent becomes the same factor with a positive exponent if it is moved across the fraction bar—from numerator to denominator or vice versa.
We have shown that the exponential expression [latex]{a}^{n}[/latex] is defined when [latex]n[/latex] is a natural number, [latex]0[/latex], or the negative of a natural number. That means that [latex]{a}^{n}[/latex] is defined for any integer [latex]n[/latex]. Also, the product and quotient rules and all of the rules we will look at soon hold for any integer [latex]n[/latex].
The Negative Rule of Exponents
For any nonzero real number [latex]a[/latex] and natural number [latex]n[/latex], the negative rule of exponents states that
Example
Write each of the following quotients with a single base. Do not simplify further. Write answers with positive exponents.
- [latex]\dfrac{{(2b) }^{3}}{{(2b) }^{10}}[/latex]
- [latex]\dfrac{{z}^{2}\cdot z}{{z}^{4}}[/latex]
- [latex]\dfrac{{\left(-5{t}^{3}\right)}^{4}}{{\left(-5{t}^{3}\right)}^{8}}[/latex]
In the following video, you will see examples of simplifying expressions with negative exponents.
Combine Exponent Rules to Simplify Expressions
Now we will combine the use of the product and quotient rules to simplify expressions whose terms may have negative or zero exponents.
Example
Write each of the following products with a single base. Do not simplify further. Write answers with positive exponents.
- [latex]{b}^{2}\cdot {b}^{-8}[/latex]
- [latex]{\left(-x\right)}^{5}\cdot {\left(-x\right)}^{-5}[/latex]
- [latex]\frac{-7z}{{\left(-7z\right)}^{5}}[/latex]
The following video shows more examples of how to combine the use of the product and quotient rules to simplify expressions whose terms may have negative or zero exponents.
Candela Citations
- Revision and Adaptation. Provided by: Lumen Learning. License: CC BY: Attribution
- Simplify Expressions Using the Quotient and Zero Exponent Rules. Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. Located at: https://youtu.be/rpoUg32utlc. License: CC BY: Attribution
- Simplify Expressions Using the Quotient and Negative Exponent Rules Mathispower4u . Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. Located at: https://youtu.be/Gssi4dBtAEI. License: CC BY: Attribution
- Simplify Expressions Using Exponent Rules (Product, Quotient, Zero Exponent). Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. Located at: https://youtu.be/EkvN5tcp4Cc. License: CC BY: Attribution
- College Algebra. Authored by: Jay Abrams et, al.. Provided by: Lumen Learning. Located at: https://courses.candelalearning.com/collegealgebra1xmaster/. License: CC BY: Attribution
- Unit 11: Exponents and Polynomials, from Developmental Math: An Open Program. Provided by: Monterey Institute of Technology and Education. Located at: http://nrocnetwork.org/dm-opentext. License: CC BY: Attribution