What is a Uniform Distribution?

Learning Outcomes

  • Calculate the mean and standard deviation for a uniform distribution
  • Calculate probabilities, including conditional probabilities, for a uniform distribution
  • Calculate percentiles for a uniform distribution

The uniform distribution is a continuous probability distribution and is concerned with events that are equally likely to occur. When working out problems that have a uniform distribution, be careful to note if the data is inclusive or exclusive.

Example

The data in the table below are 55 smiling times, in seconds, of an eight-week-old baby.

10.4 19.6 18.8 13.9 17.8 16.8 21.6 17.9 12.5 11.1 4.9
12.8 14.8 22.8 20.0 15.9 16.3 13.4 17.1 14.5 19.0 22.8
1.3 0.7 8.9 11.9 10.9 7.3 5.9 3.7 17.9 19.2 9.8
5.8 6.9 2.6 5.8 21.7 11.8 3.4 2.1 4.5 6.3 10.7
8.9 9.4 9.4 7.6 10.0 3.3 6.7 7.8 11.6 13.8 18.6

The sample mean[latex]=11.49[/latex] and the sample standard deviation[latex]=6.23[/latex].

We will assume that the smiling times, in seconds, follow a uniform distribution between zero and 23 seconds, inclusive. This means that any smiling time from zero to and including 23 seconds is equally likely. The histogram that could be constructed from the sample is an empirical distribution that closely matches the theoretical uniform distribution.

Let [latex]X=[/latex] length, in seconds, of an eight-week-old baby’s smile.

The notation for the uniform distribution is [latex]X{\sim}U(a,b)[/latex] where [latex]a=[/latex] the lowest value of [latex]x[/latex] and [latex]b=[/latex] the highest value of [latex]x[/latex].

The probability density function is [latex]{f{{({x})}}}=\frac{{1}}{{{b}-{a}}}[/latex] for [latex]a{\leq}x{\leq}b[/latex].

For this example, [latex]X{\sim}U(0,23)[/latex] and [latex]{f{{({x})}}}=\frac{{1}}{{{23}-{0}}}[/latex] for [latex]0{\leq}X{\leq}23[/latex].

Formulas for the theoretical mean and standard deviation are [latex]{\mu}=\frac{{{a}+{b}}}{{2}}{\quad\text{and}\quad}{\sigma}=\sqrt{{\frac{{{({b}-{a})}^{{2}}}}{{12}}}}[/latex]

For this problem, the theoretical mean and standard deviation are [latex]{\mu}=\frac{{{0}+{23}}}{{2}}={11.50} \text{ seconds}{\quad\text{and}\quad}{\sigma}=\sqrt{{\frac{{{({23}-{0})}^{{2}}}}{{12}}}}={6.64} \text{ seconds}[/latex]

Notice that the theoretical mean and standard deviation are close to the sample mean and standard deviation in this example.


Try It

The data that follow are the number of passengers on 35 different charter fishing boats. The sample mean [latex]=7.9[/latex] and the sample standard deviation [latex]=4.33[/latex]. The data follow a uniform distribution where all values between and including zero and 14 are equally likely. State the values of a and b. Write the distribution in proper notation, and calculate the theoretical mean and standard deviation.

1 12 4 10 4 14 11
7 11 4 13 2 4 6
3 10 0 12 6 9 10
5 13 4 10 14 12 11
6 10 11 0 11 13 2

Example

  1. Refer to the above example about the eight-week-old baby. What is the probability that a randomly chosen eight-week-old baby smiles between two and 18 seconds?
  2. Find the 90th percentile for an eight-week-old baby’s smiling time.
  3. Find the probability that a random eight-week-old baby smiles more than 12 seconds knowing that the baby smiles more than eight seconds.

Try It

A distribution is given as [latex]X{\sim}U(0,20)[/latex]. What is [latex]P(2

Example

The amount of time, in minutes, that a person must wait for a bus is uniformly distributed between 0 and 15 minutes, inclusive.

  1. What is the probability that a person waits fewer than 12.5 minutes?
  2. On the average, how long must a person wait? Find the mean, μ, and the standard deviation, σ.
  3. Ninety percent of the time, the time a person must wait falls below what value? This asks for the 90th percentile.

Try It

The total duration of baseball games in the major league in the 2011 season is uniformly distributed between 447 hours and 521 hours inclusive.

  1. Find a and b and describe what they represent.
  2. Write the distribution.
  3. Find the mean and the standard deviation.
  4. What is the probability that the duration of games for a team for the 2011 season is between 480 and 500 hours?
  5. What is the 65th percentile for the duration of games for a team for the 2011 season?

Recall: Fraction Divide by a Fraction

  1. Find the reciprocal of the fraction that follows the division symbol.
    • The reciprocal of [latex]\frac{1}{2}[/latex] is [latex]\frac{2}{1}[/latex].
  2. Multiply the first fraction (the one before the division symbol) by the reciprocal of the second fraction (the one after the division symbol).
    • [latex]\frac{3}{4} \div \frac{1}{2} = \frac{3}{4} \times \frac{2}{1} = \frac{3 \cdot 2}{4 \cdot 1} = \frac{6}{4} = 1 \frac{1}{2}[/latex].

 


Example

Suppose the time it takes a nine-year-old child to eat a donut is between 0.5 and 4 minutes, inclusive. Let X = the time, in minutes, it takes a nine-year-old to eat a donut. Then X~ U (0.5, 4).

  1. The probability that a randomly selected nine-year-old eats a donut in at least two minutes is _______.
  2. Find the probability that a different nine-year-old eats a donut in more than two minutes given that the child has already been eating the donut for more than 1.5 minutes.

 

Try It

Suppose the time it takes a student to finish a quiz is uniformly distributed between six and 15 minutes, inclusive. Let X = the time, in minutes, it takes a student to finish a quiz. Then X ~ U (6, 15).

Find the probability that a randomly selected student needs at least eight minutes to complete the quiz. Then find the probability that a different student needs at least eight minutes to finish the quiz given that she has already taken more than seven minutes.

Example

Ace Heating and Air Conditioning Service finds that the amount of time a repairman needs to fix a furnace is uniformly distributed between 1.5 and four hours. Let x = the time needed to fix a furnace. Then x ~ U (1.5, 4).

  1. Find the probability that a randomly selected furnace repair requires more than two hours.
  2. Find the probability that a randomly selected furnace repair requires less than three hours.
  3. Find the 30th percentile of furnace repair times.
  4. The longest 25% of furnace repair times take at least how long? (In other words: find the minimum time for the longest 25% of repair times.) What percentile does this represent?
  5. Find the mean and standard deviation.

Try It

The amount of time a service technician needs to change the oil in a car is uniformly distributed between 11 and 21 minutes. Let X = the time needed to change the oil on a car.

  1. Write the random variable X in words. X = __________________.
  2. Write the distribution.
  3. Graph the distribution.
  4. Find [latex]P(x>19)[/latex].
  5. Find the 50th percentile.