Rules for Finding Probabilities

Learning Outcomes

  • Calculate probabilities based on the addition rule
  • Calculate probabilities based on the multiplication rule

When calculating probability, there are two rules to consider when determining if two events are independent or dependent and if they are mutually exclusive or not.

The Multiplication Rule

If AA and BB are two events defined on a sample space, then: P(A AND B)=P(B)P(A|B)P(A AND B)=P(B)P(A|B).

This rule may also be written as P(AB)=P(A AND B)P(B)P(AB)=P(A AND B)P(B)

(The probability of AA given BB equals the probability of AA and BB divided by the probability of BB.)

If AA and BB are independent, then P(A|B)=P(A)P(A|B)=P(A). Then P(A AND B)=P(A|B)P(B)P(A AND B)=P(A|B)P(B) becomes P(A AND B)=P(A)P(B)P(A AND B)=P(A)P(B).

The Addition Rule

If AA and BB are defined on a sample space, then: P(A OR B)=P(A)+P(B)P(A AND B)P(A OR B)=P(A)+P(B)P(A AND B).

If AA and BB are mutually exclusive, then P(A AND B)=0P(A AND B)=0. Then P(A OR B)=P(A)+P(B)P(A AND B)P(A OR B)=P(A)+P(B)P(A AND B) becomes P(A OR B)=P(A)+P(B)P(A OR B)=P(A)+P(B).

Example

Klaus is trying to choose where to go on vacation. His two choices are: AA = New Zealand and BB = Alaska.

  • Klaus can only afford one vacation. The probability that he chooses AA is P(A)=0.6P(A)=0.6 and the probability that he chooses BB is P(B)=0.35P(B)=0.35.
  • P(A AND B)=0P(A AND B)=0 because Klaus can only afford to take one vacation.
  • Therefore, the probability that he chooses either New Zealand or Alaska is P(A OR B)=P(A)+P(B)=0.6+0.35=0.95P(A OR B)=P(A)+P(B)=0.6+0.35=0.95. Note that the probability that he does not choose to go anywhere on vacation must be 0.050.05.

Recall: Add or Subtract Decimals

  1. Write the numbers vertically so the decimal points line up.
  2. Use zeros as place holders, as needed.
  3. Add or subtract the numbers as if they were whole numbers. Then place the decimal in the answer under the decimal points in the given numbers.

Example

Carlos plays college soccer. He makes a goal 6565% of the time he shoots. Carlos is going to attempt two goals in a row in the next game. A=A= the event Carlos is successful on his first attempt. P(A)=0.65.B=P(A)=0.65.B= the event Carlos is successful on his second attempt. P(B)=0.65P(B)=0.65. Carlos tends to shoot in streaks. The probability that he makes the second goal GIVEN that he made the first goal is 0.900.90.

  1. What is the probability that he makes both goals?
  2. What is the probability that Carlos makes either the first goal or the second goal?
  3. Are AA and BB independent?
  4. Are AA and BB mutually exclusive?

 


Watch this video for another example about first determining whether a series of events are mutually exclusive, then finding the probability of a specific outcome.

Try it

Helen plays basketball. For free throws, she makes the shot 7575% of the time. Helen must now attempt two free throws. CC = the event that Helen makes the first shot. P(C)=0.75P(C)=0.75. DD = the event Helen makes the second shot. P(D)=0.75P(D)=0.75. The probability that Helen makes the second free throw given that she made the first is 0.850.85. What is the probability that Helen makes both free throws?

Example

A community swim team has 150 members. Seventy-five of the members are advanced swimmers. Forty-seven of the members are intermediate swimmers. The remainder are novice swimmers. Forty of the advanced swimmers practice four times a week. Thirty of the intermediate swimmers practice four times a week. Ten of the novice swimmers practice four times a week. Suppose one member of the swim team is chosen randomly.

  1. What is the probability that the member is a novice swimmer?
  2. What is the probability that the member practices four times a week?
  3. What is the probability that the member is an advanced swimmer and practices four times a week?
  4. What is the probability that a member is an advanced swimmer and an intermediate swimmer? Are being an advanced swimmer and an intermediate swimmer mutually exclusive? Why or why not?
  5. Are being a novice swimmer and practicing four times a week independent events? Why or why not?

try it

A school has 200200 seniors, of whom 140140 will be going to college next year. Forty will be going directly to work. The remainder are taking a gap year. Fifty of the seniors going to college play sports. Thirty of the seniors going directly to work play sports. Five of the seniors taking a gap year play sports. What is the probability that a senior is taking a gap year?

Example

Felicity attends Modesto JC in Modesto, CA. The probability that Felicity enrolls in a math class is 0.2 and the probability that she enrolls in a speech class is 0.65. The probability that she enrolls in a math class, given that she enrolls in speech class, is 0.25.

Let MM = math class, SS = speech class, M|SM|S = math given speech.

  1. What is the probability that Felicity enrolls in math and speech? Find P(M AND S)=P(M|S)P(S)P(M AND S)=P(M|S)P(S).
  2. What is the probability that Felicity enrolls in math or speech classes? Find P(M OR S)=P(M)+P(S)P(M AND S)P(M OR S)=P(M)+P(S)P(M AND S).
  3. Are MM and SS independent? Is P(M|S)=P(M)P(M|S)=P(M)?
  4. Are MM and SS mutually exclusive? Is P(M AND S)=0P(M AND S)=0?

 

try it

A student goes to the library. Let events BB = the student checks out a book and DD = the student check out a DVD. Suppose that P(B)=0.40P(B)=0.40, P(D)=0.30P(D)=0.30 and P(D|B)=0.5P(D|B)=0.5.

  1. Find P(B AND D)P(B AND D).
  2. Find P(B OR D)P(B OR D).

Example

Studies show that about one woman in seven (approximately 14.314.3%) who live to be 9090 will develop breast cancer. Suppose that of those women who develop breast cancer, a test is negative 22% of the time. Also suppose that in the general population of women, the test for breast cancer is negative about 8585% of the time. Let BB = woman develops breast cancer and let NN = tests negative. Suppose one woman is selected at random.

  1. What is the probability that the woman develops breast cancer? What is the probability that woman tests negative?
  2. Given that the woman has breast cancer, what is the probability that she tests negative?
  3. What is the probability that the woman has breast cancer AND tests negative?
  4. What is the probability that the woman has breast cancer or tests negative?
  5. Are having breast cancer and testing negative independent events?
  6. Are having breast cancer and testing negative mutually exclusive?

 

Try it

A school has 200200 seniors, of whom 140140 will be going to college next year. Forty will be going directly to work. The remainder are taking a gap year. Fifty of the seniors going to college play sports. Thirty of the seniors going directly to work play sports. Five of the seniors taking a gap year play sports. What is the probability that a senior is going to college and plays sports?

Example

Refer to the information in the earlier example on women who develop breast cancer. PP = tests positive.

  1. Given that a woman develops breast cancer, what is the probability that she tests positive. Find P(P|B)=1P(N|B)P(P|B)=1P(N|B).
  2. What is the probability that a woman develops breast cancer and tests positive? Find P(B AND P)=P(P|B)P(B)P(B AND P)=P(P|B)P(B).
  3. What is the probability that a woman does not develop breast cancer? Find P(B)=1P(B).
  4. What is the probability that a woman tests positive for breast cancer? Find P(P)=1P(N).

try it

A student goes to the library. Let events B = the student checks out a book and D = the student checks out a DVD. Suppose that P(B)=0.40, P(D)=0.30 and P(D|B)=0.5.

  1. Find P(B).
  2. Find P(D AND B).
  3. Find P(B|D).
  4. Find P(D AND B).
  5. Find P(D|B).