Reading: Physical Evidence

Fossils

Fossils provide solid evidence that organisms from the past are not the same as those found today, and fossils show a progression of evolution. Scientists determine the age of fossils and categorize them from all over the world to determine when the organisms lived relative to each other. The resulting fossil record tells the story of the past and shows the evolution of form over millions of years (Figure 1a). For example, scientists have recovered highly detailed records showing the evolution of humans and horses (Figure 1b).

Photo A shows a museum display of hominid skulls that vary in size and shape. Illustration B shows five extinct species related and similar in appearance to the modern horse. The species vary in size from that of a modern horse to that of a medium-sized dog.

Figure 1. In this (a) display, fossil hominids are arranged from oldest (bottom) to newest (top). As hominids evolved, the shape of the skull changed. An artist’s rendition of (b) extinct species of the genus Equus reveals that these ancient species resembled the modern horse (Equus ferus) but varied in size.

Anatomy and Embryology

Illustration compares a human arm, dog and bird legs, and a whale flipper. All appendages have the same bones, but the size and shape of these bones vary.

Figure 2. The similar construction of these appendages indicates that these organisms share a common ancestor.

Another type of evidence for evolution is the presence of structures in organisms that share the same basic form. For example, the bones in the appendages of a human, dog, bird, and whale all share the same overall construction (Figure 2) resulting from their origin in the appendages of a common ancestor. Over time, evolution led to changes in the shapes and sizes of these bones in different species, but they have maintained the same overall layout. Scientists call these synonymous parts homologous structures.

Some structures exist in organisms that have no apparent function at all, and appear to be residual parts from a past common ancestor. These unused structures without function are called vestigial structures. Some examples of vestigial structures are wings on flightless birds, leaves on some cacti, and hind leg bones in whales.

Visit this interactive site to guess which bones structures are homologous and which are analogous, and see examples of evolutionary adaptations to illustrate these concepts.

Another evidence of evolution is the convergence of form in organisms that share similar environments. For example, species of unrelated animals, such as the arctic fox and ptarmigan, living in the arctic region have been selected for seasonal white phenotypes during winter to blend with the snow and ice (Figure 3). These similarities occur not because of common ancestry, but because of similar selection pressures—the benefits of not being seen by predators.

The left photo depicts an arctic fox with white fur sleeping on white snow, and the right photo shows a ptarmigan with white plumage standing on white snow.

Figure 3. The white winter coat of the (a) arctic fox and the (b) ptarmigan’s plumage are adaptations to their environments. (credit a: modification of work by Keith Morehouse)

Embryology, the study of the development of the anatomy of an organism to its adult form, also provides evidence of relatedness between now widely divergent groups of organisms. Mutational tweaking in the embryo can have such magnified consequences in the adult that embryo formation tends to be conserved. As a result, structures that are absent in some groups often appear in their embryonic forms and disappear by the time the adult or juvenile form is reached. For example, all vertebrate embryos, including humans, exhibit gill slits and tails at some point in their early development. These disappear in the adults of terrestrial groups but are maintained in adult forms of aquatic groups such as fish and some amphibians. Great ape embryos, including humans, have a tail structure during their development that is lost by the time of birth.

Section Summary

Since Darwin developed his ideas on descent with modification and the pressures of natural selection, a variety of evidence has been gathered supporting the theory of evolution. Fossil evidence shows the changes in lineages over millions of years, such as in hominids and horses. Studying anatomy allows scientists to identify homologous structures across diverse groups of related organisms, such as leg bones. Vestigial structures also offer clues to common ancestors. Using embryology, scientists can identify common ancestors through structures present only during development and not in the adult form.