Solutions

Solutions to Try Its

1. AB=[1413][3411]=[1(3)+4(1)1(4)+4(1)1(3)+3(1)1(4)+3(1)]=[1001]BA=[3411][1413]=[3(1)+4(1)3(4)+4(3)1(1)+1(1)1(4)+1(3)]=[1001]

2. A1=[35152515]

3. A1=112243365

4. X=43858

Solutions to Odd-Numbered Exercises

1. If A1 is the inverse of A, then AA1=I, the identity matrix. Since A is also the inverse of A1,A1A=I. You can also check by proving this for a 2×2 matrix.

3. No, because ad and bc are both 0, so adbc=0, which requires us to divide by 0 in the formula.

5. Yes. Consider the matrix [0110]. The inverse is found with the following calculation: A1=10(0)1(1)[0110]=[0110].

7. AB=BA=[1001]=I

9. AB=BA=[1001]=I

11. AB=BA=100010001=I

13. 129[9213]

15. 169[2793]

17. There is no inverse

19. 47[0.51.510.5]

21. 11755320312114

23. 1209475769101912243813

25. 1860168561404484080280

27. (5,6)

29. (2,0)

31. (13,52)

33. (23,116)

35. (7,12,15)

37. (5,0,1)

39. 134(35,97,154)

41. 1690(65,1136,229)

43. (3730,815)

45. (10123,1,25)

47. 12⎢ ⎢ ⎢2111011101110111⎥ ⎥ ⎥

49. 139⎢ ⎢ ⎢3217185332102436219946165⎥ ⎥ ⎥

51. ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢100000010000001000000100000010111111⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

53. Infinite solutions.

55. 50% oranges, 25% bananas, 20% apples

57. 10 straw hats, 50 beanies, 40 cowboy hats

59. Tom ate 6, Joe ate 3, and Albert ate 3.

61. 124 oranges, 10 lemons, 8 pomegranates