and the function for the volume of a sphere with radius r is
Both of these are examples of power functions because they consist of a coefficient, π or 43π, multiplied by a variable r raised to a power.
A General Note: Power Function
A power function is a function that can be represented in the form
where k and p are real numbers, and k is known as the coefficient.
Q & A
Is f(x)=2x a power function?
No. A power function contains a variable base raised to a fixed power. This function has a constant base raised to a variable power. This is called an exponential function, not a power function.
Example 1: Identifying Power Functions
Which of the following functions are power functions?
begin{cases}f\left(x\right)=1hfill & text{Constant function}hfill \ f\left(x\right)=xhfill & text{Identify function}hfill \ f\left(x\right)={x}^{2}hfill & text{Quadratic}text{ }text{ function}hfill \ f\left(x\right)={x}^{3}hfill & text{Cubic function}hfill \ f\left(x\right)=\frac{1}{x} hfill & text{Reciprocal function}hfill \ f\left(x\right)=\frac{1}{{x}^{2}}hfill & text{Reciprocal squared function}hfill \ f\left(x\right)=sqrt{x}hfill & text{Square root function}hfill \ f\left(x\right)=sqrt[3]{x}hfill & text{Cube root function}hfill end{cases}
Solution
All of the listed functions are power functions.
The constant and identity functions are power functions because they can be written as f(x)=x0 and f(x)=x1 respectively.
The quadratic and cubic functions are power functions with whole number powers f(x)=x2 and f(x)=x3.
The reciprocal and reciprocal squared functions are power functions with negative whole number powers because they can be written as f(x)=x−1 and f(x)=x−2.
The square and cube root functions are power functions with \fractional powers because they can be written as f(x)=x1/2 or f(x)=x1/3.
Candela Citations
- Precalculus. Authored by: Jay Abramson, et al.. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175. License: CC BY: Attribution. License Terms: Download For Free at : http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175.