### Learning Objectives

By the end of this section, you will be able to:

- Use the product rule of exponents.
- Use the quotient rule of exponents.
- Use the power rule of exponents.
- Use the zero exponent rule of exponents.
- Use the negative rule of exponents.
- Find the power of a product and a quotient.
- Simplify exponential expressions.
- Use scientific notation.

Mathematicians, scientists, and economists commonly encounter very large and very small numbers. But it may not be obvious how common such figures are in everyday life. For instance, a pixel is the smallest unit of light that can be perceived and recorded by a digital camera. A particular camera might record an image that is 2,048 pixels by 1,536 pixels, which is a very high resolution picture. It can also perceive a color depth (gradations in colors) of up to 48 bits per frame, and can shoot the equivalent of 24 frames per second. The maximum possible number of bits of information used to film a one-hour (3,600-second) digital film is then an extremely large number.

Using a calculator, we enter [latex]2,048\times 1,536\times 48\times 24\times 3,600[/latex] and press ENTER. The calculator displays 1.304596316E13. What does this mean? The “E13” portion of the result represents the exponent 13 of ten, so there are a maximum of approximately [latex]1.3\times {10}^{13}[/latex] bits of data in that one-hour film. In this section, we review rules of exponents first and then apply them to calculations involving very large or small numbers.