Section Exercises

1. Can any quotient of polynomials be decomposed into at least two partial fractions? If so, explain why, and if not, give an example of such a fraction

2. Can you explain why a partial fraction decomposition is unique? (Hint: Think about it as a system of equations.)

3. Can you explain how to verify a partial fraction decomposition graphically?

4. You are unsure if you correctly decomposed the partial fraction correctly. Explain how you could double-check your answer.

5. Once you have a system of equations generated by the partial fraction decomposition, can you explain another method to solve it? For example if you had 7x+133x2+8x+15=Ax+1+B3x+57x+133x2+8x+15=Ax+1+B3x+5, we eventually simplify to 7x+13=A(3x+5)+B(x+1)7x+13=A(3x+5)+B(x+1). Explain how you could intelligently choose an xx -value that will eliminate either AA or BB and solve for AA and BB.

For the following exercises, find the decomposition of the partial fraction for the nonrepeating linear factors.

6. 5x+16x2+10x+245x+16x2+10x+24

7. 3x79x25x243x79x25x24

8. x24x22x24x24x22x24

9. 10x+47x2+7x+1010x+47x2+7x+10

10. x6x2+25x+25x6x2+25x+25

11. 32x1120x213x+232x1120x213x+2

12. x+1x2+7x+10x+1x2+7x+10

13. 5xx295xx29

14. 10xx22510xx225

15. 6xx246xx24

16. 2x3x26x+52x3x26x+5

17. 4x1x2x64x1x2x6

18. 4x+3x2+8x+154x+3x2+8x+15

19. 3x1x25x+63x1x25x+6

For the following exercises, find the decomposition of the partial fraction for the repeating linear factors.

20. 5x19(x+4)25x19(x+4)2

21. x(x2)2x(x2)2

22. 7x+14(x+3)27x+14(x+3)2

23. 24x27(4x+5)224x27(4x+5)2

24. 24x27(6x7)224x27(6x7)2

25. 5x(x7)25x(x7)2

26. 5x+142x2+12x+185x+142x2+12x+18

27. 5x2+20x+82x(x+1)25x2+20x+82x(x+1)2

28. 4x2+55x+255x(3x+5)24x2+55x+255x(3x+5)2

29. 54x3+127x2+80x+162x2(3x+2)254x3+127x2+80x+162x2(3x+2)2

30. x35x2+12x+144x2(x2+12x+36)x35x2+12x+144x2(x2+12x+36)

For the following exercises, find the decomposition of the partial fraction for the irreducible nonrepeating quadratic factor.

31. 4x2+6x+11(x+2)(x2+x+3)4x2+6x+11(x+2)(x2+x+3)

32. 4x2+9x+23(x1)(x2+6x+11)4x2+9x+23(x1)(x2+6x+11)

33. 2x2+10x+4(x1)(x2+3x+8)2x2+10x+4(x1)(x2+3x+8)

34. x2+3x+1(x+1)(x2+5x2)x2+3x+1(x+1)(x2+5x2)

35. 4x2+17x1(x+3)(x2+6x+1)4x2+17x1(x+3)(x2+6x+1)

36. 4x2(x+5)(x2+7x5)4x2(x+5)(x2+7x5)

37. 4x2+5x+3x314x2+5x+3x31

38. 5x2+18x4x3+85x2+18x4x3+8

39. 3x27x+33x3+273x27x+33x3+27

40. x2+2x+40x3125x2+2x+40x3125

41. 4x2+4x+128x3274x2+4x+128x327

42. 50x2+5x3125x3150x2+5x3125x31

43. 2x330x2+36x+216x4+216x2x330x2+36x+216x4+216x

For the following exercises, find the decomposition of the partial fraction for the irreducible repeating quadratic factor.

44. 3x3+2x2+14x+15(x2+4)23x3+2x2+14x+15(x2+4)2

45. x3+6x2+5x+9(x2+1)2x3+6x2+5x+9(x2+1)2

46. x3x2+x1(x23)2x3x2+x1(x23)2

47. x2+5x+5(x+2)2x2+5x+5(x+2)2

48. x3+2x2+4x(x2+2x+9)2x3+2x2+4x(x2+2x+9)2

49. x2+25(x2+3x+25)2x2+25(x2+3x+25)2

50. 2x3+11x+7x+70(2x2+x+14)22x3+11x+7x+70(2x2+x+14)2

51. 5x+2x(x2+4)25x+2x(x2+4)2

52. x4+x3+8x2+6x+36x(x2+6)2x4+x3+8x2+6x+36x(x2+6)2

53. 2x9(x2x)22x9(x2x)2

54. 5x32x+1(x2+2x)25x32x+1(x2+2x)2

For the following exercises, find the partial fraction expansion.

55. x2+4(x+1)3x2+4(x+1)3

56. x34x2+5x+4(x2)3x34x2+5x+4(x2)3

For the following exercises, perform the operation and then find the partial fraction decomposition.

57. 7x+8+5x2x1x26x167x+8+5x2x1x26x16

58. 1x43x+62x+7x2+2x241x43x+62x+7x2+2x24

59. 2xx21612xx2+6x+8x5x24x2xx21612xx2+6x+8x5x24x